
Boundary Control of PDEs:

A Course on Backstepping Designs

class slides

Miroslav Krstic

1 of 275



Introduction

2 of 275



• Fluid flows in aerodynamics and propulsion applications;

plasmas in lasers, fusion reactors, and hypersonic vehicles;

liquid metals in cooling systems for tokamaks and computers, as well as in welding
and metal casting processes;

acoustic waves, water waves in irrigation systems...

• Flexible structures in civil engineering, aircraft wings and helicopter rotors, astronom-
ical telescopes, and in nanotechnology devices like the atomic force microscope...

• Electromagnetic waves and quantum mechanical systems...

• Waves and “ripple” instabilities in thin film manufacturing and in flame dynamics...

• Chemical processes in process industries and in internal combustion engines...

3 of 275



Unfortunately, even “toy” PDE control problems like heat and wave equations (neither of
which is unstable) require some background in functional analysis.

Courses in control of PDEs rare in engineering programs.

This course: methods which are easy to understand, minimal background beyond calculus.

4 of 275



Boundary Control

Two PDE control settings:

• “in domain” control (actuation penetrates inside the domain of the PDE system or is
evenly distributed everywhere in the domain, likewise with sensing);

• “boundary” control (actuation and sensing are only through the boundary conditions).

Boundary control physically more realistic because actuation and sensing are non-intrusive
(think, fluid flow where actuation is from the walls).∗

∗“Body force” actuation of electromagnetic type is also possible but it has low control authority and its spatial
distribution typically has a pattern that favors the near-wall region.

5 of 275



Boundary control harder problem, because the “input operator” (the analog of the B matrix
in the LTI finite dimensional model ẋ= Ax+Bu) and the output operator (the analog of the
C matrix in y=Cx) are unbounded operators.

Most books on control of PDEs either don’t cover boundary control or dedicate only small
fractions of their coverage to boundary control.

This course is devoted exclusively to boundary control.

6 of 275



Backstepping

A particular approach to stabilization of dynamic systems with “triangular” structure.

Wildly successful in the area of nonlinear control since

[KKK] Krstic, Kanellakopoulos, Kokotovic
Nonlinear and Adaptive Control Design, 1995.

Other methods:

Optimal control for PDEs requires sol’n of operator Riccati equations (nonlinear and
infinite-dimensional algebraic eqns).

Pole placement pursues precise assignment of a finite subset of the PDE’s eigenvalues
and requires model reduction.

Instead, backstepping achieves Lyapunov stabilization by transforming the system into a
stable “target system.”

7 of 275



A Short List of Other Books on Control of PDEs

• R. F. CURTAIN AND H. J. ZWART, An Introduction to Infinite Dimensional
Linear Systems Theory, Springer-Verlag, 1995.

• I. LASIECKA, R. TRIGGIANI, Control Theory for Partial Differential Equations:
Continuous and Approximation Theories, Cambridge Univ. Press, 2000.

• A. BENSOUSSAN, G. DA PRATO, M. C. DELFOUR AND S. K. MITTER, Rep-
resentation and control of infinite–dimensional systems, Birkhauser, 2006.

• Z. H. LUO, B. Z. GUO, AND O. MORGUL, Stability and Stabilization of Infinite
Dimensional Systems with Applications, Springer Verlag, 1999.

• J. E. LAGNESE, Boundary stabilization of thin plates, SIAM, 1989.

• P. CHRISTOFIDES, Nonlinear and Robust Control of Partial Differential Equa-
tion Systems: Methods and Applications to Transport-Reaction Processes,
Boston: Birkhäuser, 2001.

8 of 275



The Role of Model Reduction

Plays an important role in most methods for control design for PDEs.

They extract a finite dimensional subsystem to be controlled, while showing robustness to
neglecting the remaining infinite dimensional dynamics in the design.

Backstepping does not employ model reduction—none is needed, except at the implemen-
tation stage.

9 of 275



Control Objectives for PDE Systems

• Performance improvement—for stable systems, optimal control.

• Stabilization—this course deals almost exclusively w/ unstable plants.

• Trajectory tracking—requires stabilizing fbk plus sol’n to trajectory generation probl.

• Trajectory generation/motion planning—towards the end of the course.

10 of 275



Classes of PDEs and Benchmark PDEs Dealt With in the Course

In contrast to ODEs, no general methodology for PDEs.

Two basic categories of PDEs studied in textbooks: parabolic and hyperbolic PDEs, with
standard examples being heat and wave equations.

Many more categories.

11 of 275



Categorization of PDEs studied in the course

∂t ∂tt

∂x transport PDEs, delays

∂xx parabolic PDEs, hyperbolic PDEs,
reaction-advection-diffusion systems wave equations

∂xxx Korteweg-de Vries

∂xxxx Kuramoto-Sivashinsky Euler-Bernoulli
and Navier-Stokes and shear beams,

(Orr-Sommerfeld form) Schrodinger, Ginzburg-Landau

Timoshenko beam model has four derivatives in both time and space.

Also, complex-valued PDEs (with complex coefficients): Schrodinger and Ginzburg-
Landau eqns. They “look” like parabolic PDEs, but behave like oscillatory, hyperbolic
PDEs. Schrodinger equivalent to the Euler-Bernoulli beam PDE.

12 of 275



Choices of Boundary Controls

Thermal: actuate heat flux or temperature.

Structural: actuate beam’s boundary position, or force, or angle, or moment.

Mathematical choices of boundary control:

Dirichlet control u(1, t)—actuate value of a function at boundary

Neumann control ux(1, t)—actuate slope of a function at boundary

13 of 275



The Domain Dimension—1D, 2D, and 3D

PDE control complex enough in 1D: string, acoustic duct, beam, chemical tubular reactor,
etc.

Can have finitely- and even infinitely-many unstable eigenvalues.

Some PDEs evolve in 2D and 3D but are dominated by phenomena evolving in one coor-
dinate direction (while the phenomena in the other directions are stable and slow).

Some PDEs are genuinely 3D: Navier-Stokes.

See the companion book:

Vazquez and Krstic, Control of Turbulent and Magnetohydrodynamic Channel
Flows, Birkhauser, 2007.

14 of 275



Domain Shape in 2D and 3D

Rectangle or annulus much more readily tractable than a problem where the domain has
an “amorphous/wiggly” shape.

Beware: literature abounds with abstract control methods for 2D and 3D PDE systems on
general domains, where the complexities are hidden behind neatly written Riccati eqns.

Genuinely 2D or 3D systems, particularly if unstable and on oddly shaped domains (e.g.,
turbulent fluids in 3D around irregularly shaped bodies), truly require millions of differential
equations to simulate and tens of thousands of equations to do control design for them.

Reasonable set up: boundary control of an endpoint of a line interval; edge of a rectangle;
side of e parallelepiped.
(Dimension of actuation domain lower by one than dimension of PDE domain.)

15 of 275



Observers

Observer design using boundary sensing, dual to full-state fbk boundary control design.

Observer error system is exponentially stabilized.

Separation principle holds.

16 of 275



Adaptive Control of PDEs

Parameter estimators—system identifiers—for PDEs.

Unstable PDEs with unknown parameters controlled using parameter estimators supplied
by identifiers and using state estimators supplied by adaptive observers.

See the companion book

Smyshlyaev and Krstic, Adaptive Control of Parabolic PDEs, Princeton University
Press, 2010.

17 of 275



Nonlinear PDEs

At present, virtually no methods exist for boundary control of nonlinear PDEs.

Several results are available that apply to nonlinear PDEs that are neutrally stable and
where the nonlinearity plays no destabilizing role.

No advanced control designs exist for broad classes of nonlinear PDEs that are open-loop
unstable and where a sophisticated control Lyapunov function of non-quadratic type needs
to be constructed to achieve closed-loop stability.

Though the focus of the course is on linear PDEs, we introduce basic ideas for stabilization
of nonlinear PDEs at the end.

18 of 275



Delay Systems

A special class of ODE/PDE systems.

Delay is a transport PDE. (One derivative in space and one in time. First-order hyperbolic.)

Specialized books by Gu, Michiels, Niculescu.

A book focused on input delays, nonlinear plants, and unknown delays:

M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems,
Birkhauser, 2009.

19 of 275



Organization of the Course

1. Basic Lyapunov stability ideas for PDEs. Backstepping transforms a PDE into a desir-
able “target PDE” within the same class. General Lyapunov thms for PDEs not very
useful. We learn how to calculate stability estimates for a basic stable PDE and high-
light the roles of spatial norms (L2, H1, and so on), the role of the Poincare, Agmon,
and Sobolev inequalities, the role of integration by parts in Lyapunov calculations, and
the distinction between energy boundedness and pointwise (in space) boundedness.

2. Eigenvalues, eigenfunctions, and basics of finding solutions of PDEs analytically.

3. Backstepping method. Our main “tutorial tool” is the reaction-diffusion PDE example

ut(x, t) = uxx(x, t)+λu(x, t) ,

on the spatial interval x ∈ (0,1), with one uncontrolled boundary condition at x= 0,

u(0, t) = 0

and with a control applied through Dirichlet boundary actuation at x= 1.
20 of 275



4. Observer design. Develop a dual of backstepping for finding observer gain functions.
Use reaction-diffusion PDE as an example.

5. Schrodinger and Ginzburg-Landau PDEs. Complex-valued but a backstepping design
for parabolic PDEs easily extended. GL models vortex shedding.

6. Hyperbolic and “hyperbolic-like” equations—wave equations, beams, transport equa-
tions, and delay equations.

7. “Exotic” PDEs, with just one time derivative but with three and even four spatial
derivatives—Kuramoto-Sivashinsky and Korteweg-de Vries eqns.

8. 3D Navier-Stokes eqn at high Reynolds number.

9. Motion planning/trajectory generation for PDEs. For example, how to find the time
function for the input force for one end of a flexible beam to produce precisely the
desired time-varying motion with the tip of the free end of the beam.

21 of 275



10. Adaptive control for parametrically uncertain PDEs.

11. Nonlinear PDEs.

22 of 275



Why We Don’t State Theorems

Focus on tools that allow to solve many problems, rather than on developing complete
theorem statements for a few problems.

Want to move fast and cover many classes of PDEs and control/estimation topics.

Want to maintain physical intuition.

Want to make the material accessible to any control engineering grad student.

23 of 275



Focus on Unstable PDEs in 1D and Feedback Design Challenges

Unstable parabolic and hyperbolic PDEs in 1D with terms causing instability unmatched
by the boundary control.

Feedback design challenges greater than the existence/uniqueness challenges, which are
well addressed in analysis-oriented PDE books.

24 of 275



The Main Idea of Backstepping Control

Backstepping is a robust† extension of the “feedback linearization” approach for nonlinear
finite-dimensional systems.

†Backstepping provides design tools that endow the controller with robustness to uncertain parameters and
functional uncertainties in the plant nonlinearities, and robustness to external disturbances, robustness to
other forms of modeling errors.

25 of 275



Feedback linearization entails two steps:

1. Construction of an invertible change of variables such that the system appears as
linear in the new variables, except for a nonlinearity which is “in the span” of the
control input vector;

2. Cancellation of the nonlinearity‡ and the assignment of desirable linear exponentially
stable dynamics on the closed-loop system.

‡In contrast to the standard feedback linearization, backstepping allows the flexibility to not necessarily
cancel the nonlinearity. A nonlinearity may be kept if it is useful or it may be dominated (rather than
cancelled non-robustly) if it is potentially harmful and uncertain.

26 of 275



Backstepping for PDEs:

1. Identify the undesirable terms in the PDE.

2. Choose a target system in which the undesirable terms are to be eliminated by state
transformation and feedback, as in feedback linearization.

3. Find the state transformation as identity minus a Volterra operator (in x).
Volterra operator = integral operator from 0 up to x (rather than from 0 to 1).
Volterra transformation is “triangular” or “spatially causal.”

4. Obtain boundary feedback from the Volterra transformation. The transformation alone
cannot eliminate the undesirable terms, but the transformantion brings them to the
boundary, so control can cancel them.

27 of 275



Gain fcn of boundary controller = kernel of Volterra transformation.

Volterra kernel satisfies a linear PDE.

Backstepping is not “one-size-fits-all.” Requires structure-specific effort by designer.

Reward: elegant controller, clear closed-loop behavior.

28 of 275



Unique to This Course—Elements of Adaptive and Nonlinear Designs for PDEs

Prior to backstepping, state-of-the-art in adaptive and nonlinear control for PDEs compa-
rable to the state-of-the-art for ODEs in the 1960s.

A wide range of PDE structures with nonlinearities, unknown parameters, and boundary
control require backstepping.

29 of 275



Origins of This Course

Developed out of research results and papers by the instructor and his PhD students.

First taught as MAE 287 Distributed Parameter Systems at University of California, San
Diego, in Fall 2005.

30 of 275



Lyapunov Stability

31 of 275



Recall some basics of stability analysis for linear ODEs.

An ODE

ż= Az , z ∈ R
n (1)

is exponentially stable (e.s.) at z = 0 if ∃M > 0 (overshoot coeff.) and α > 0 (decay rate)
s.t.

‖z(t)‖ ≤Me−αt‖z(0)‖, for all t ≥ 0 (2)

‖ ·‖ denotes one of the equivalent vector norms, e.g., the 2-norm.

32 of 275



This is a definition of stability. If all the eigenvalues of the matrix A have negative real parts,
this guarantees e.s., but this test is not always practical.

An alternative (iff) test which is more useful in state-space/time-domain and robustness
studies:

∀ positive definite n× n matrix Q, ∃ a positive definite and symmetric matrix P
s.t.

PA+ATP= −Q . (3)

Lyapunov function:

V = xTPx , positive definite (4)
V̇ = −xTQx , negative definite . (5)

For PDEs, an (infinite-dimensional) operator equation like (3) is hard to solve.
33 of 275



Key question for PDEs: not Lyapunov functions but system norms!

In finite dimension, vector norms are “equivalent.” No matter which norm ‖ ·‖ one uses in
(2) (for example, the 2-norm, 1-norm, or ∞-norm) one gets e.s. in the sense of any other
vector norm. What changes are the constants M and α in (2).

For PDEs, the state space is not a Euclidean space but a function space, and likewise, the
state norm is not a vector norm but a function norm.

Unfortunately, norms on function spaces are not equivalent. Bounds on the state in terms
of the L1, L2, or L∞ norm in x do not follow from one another.

To make matters more complicated, other natural choices of state norms for PDEs exist
which are not equivalent with Lp norms. Those are the Sobolev norms, examples of which
are the H1 and H2 norms (not to be confused with Hardy space norms in robust control
for ODE systems), which, roughly, are the L2 norms of the first and second derivative,
respectively, of the PDE state.

34 of 275



With such a variety of choice, dictated by idiosyncracies of the PDE classes, general Lya-
punov stability theory for PDEs is hopeless, though some efforts are made in

1. J. A. WALKER, Dynamical Systems and Evolution Equations, Plenum, 1980.

2. D. HENRY, Geometric Theory of Semilinear Parabolic Equations, Springer, 1993.

Instead, one is better off learning how to derive, from scratch, “energy estimates” (one’s
own Lyapunov theorems) in different norms.

35 of 275



A Basic PDE Model

Before introducing stability concepts, we develop a basic “non-dimensionalized” PDE
model, a 1D heat equation, which will help introduce the idea of energy estimates now,
and be used as a target system for some backstepping designs later.

ξ

A thermally conducting rod.

36 of 275



The evolution of the temperature profile T (ξ,τ), as a function of the spatial variable ξ and
time τ, is described by the heat equation§

Tτ(ξ,τ) = εTξξ(ξ,τ) , x ∈ (0,L) (6)
T (0,τ) = T1 , left end of rod (7)
T (L,τ) = T2 , right end of rod (8)
T (ξ,0) = T0(ξ) , initial temperature distribution . (9)

ε = thermal diffusivity
Tτ, Tξξ = partial derivatives with respect to time and space.

§While in physical heat conduction problems it is more appropriate to assume that the heat flux Tξ is held
constant at the boundaries (rather than the temperature T itself), for simplicity of our introductory exposition
we proceed with the boundary conditions as in (7), (8)

37 of 275



Our objective is to write this equation in nondimensional variables that describe the error
between the unsteady temperature and the equilibrium profile of the temperature:

1. Scale ξ to normalize length:

x=
ξ
L

, (10)

which gives

Tτ(x,τ) =
ε

L2Txx(x,τ) (11)

T (0,τ) = T1 (12)
T (1,τ) = T2 . (13)

2. Scale time to normalize thermal diffusivity:

t =
ε

L2τ , (14)

which gives

Tt(x, t) = Txx(x, t) (15)
T (0, t) = T1 (16)
T (1, t) = T2 . (17)

38 of 275



3. Introduce new variable

w= T −  T (18)

where

 T (x) = T1 + x(T2−T1)

is the steady-state profile and is found as a solution to the two-point boundary-value
ODE

 T ′′(x) = 0 (19)
 T (0) = T1 (20)
 T (1) = T2 . (21)

39 of 275



We obtain

wt = wxx (22)
w(0) = 0 (23)
w(1) = 0 , (24)

with initial distribution w0 = w(x,0).

Note that here and throughout the rest of the course for compactness and ease of the presentation we drop

the dependence on time and spatial variable where it does not lead to a confusion, i.e. by w, w(0) we always

mean w(x, t), w(0, t), respectively, unless specifically stated.

40 of 275



The following are the basic types of boundary conditions for PDEs in dimension one:

• Dirichlet: w(0) = 0 (fixed temperature at x= 0)

• Neumann: wx(0) = 0 (fixed heat flux at x= 0)

• Robin (mixed): wx(0)+qw(0) = 0

41 of 275



Lyapunov Analysis for a Heat Equation in Terms of ‘L2 Energy’

wt = wxx (25)
w(0) = 0 (26)
w(1) = 0 . (27)

Obviously stable for physical reasons and stability can also be shown by finding explic.
soln.

But we want to learn a method for analyzing stability.

Lyapunov function candidate (“energy”)¶

V (t) =
1
2

Z 1

0
w2(x, t)dx=

1
2
‖w(t)‖2 (28)

where ‖ ·‖ denotes the L2 norm of a function of x: ‖w(t)‖ =

(
Z 1

0
w(x, t)2dx

)1/2
.

¶Strictly speaking, this is a functional, but we refer to it simply as a “Lyapunov function.”
42 of 275



Time derivative of V :

V̇ =
dV
dt

=
Z 1

0
w(x, t)wt(x, t)dx (applying the chain rule)

=
Z 1

0
wwxxdx (from (25))

=
!

!
!

!
!!

wwx|10−
Z 1

0
w2
xdx (integration by parts)

= −
Z 1

0
w2
xdx . (29)

Since V̇ ≤ 0,V is bounded. However, it is not clear ifV goes to zero because (29) depends
on wx and not on w, so one cannot express the right hand side of (29) in terms of V .

43 of 275



Recall two useful inequalities:

Young’s Inequality (special case)

ab≤
γ
2
a2 +

1
2γ
b2 (30)

Cauchy-Schwartz Inequality

Z 1

0
uwdx≤

(
Z 1

0
u2dx

)1/2(Z 1

0
w2dx

)1/2
(31)

44 of 275



The following lemma establishes the relationship between the L2 norms of w and wx.

Lemma 1 (Poincare Inequality) For any w, continuously differentiable on [0,1],

Z 1

0
w2dx≤ 2w2(1)+4

Z 1

0
w2
x dx

Z 1

0
w2dx≤ 2w2(0)+4

Z 1

0
w2
x dx

(32)

Remark 1 The inequalities (32) are conservative. A tighter version of (32) is
Z 1

0
w2dx≤ w2(0)+

8
π2

Z 1

0
w2
x dx , (33)

which is called “a variaton of Wirtinger’s inequality.” The proof of (33) is far more compli-
cated than the proof of (32) and is given in the classical book on inequalities by Hardy,

Littlewood, and Polya. When w(0) = 0 or w(1) = 0, one can even get ‖w‖ ≤
2
π
‖wx‖ .

45 of 275



Proof.
Z 1

0
w2dx = xw2|10−2

Z 1

0
xwwx dx (integration by parts)

= w2(1)−2
Z 1

0
xwwxdx

≤ w2(1)+
1
2

Z 1

0
w2dx+2

Z 1

0
x2w2

x dx .

Subtracting the second term from both sides we get the first inequality in (32):

1
2

Z 1

0
w2dx ≤ w2(1)+2

Z 1

0
x2w2

xdx

≤ w2(1)+2
Z 1

0
w2
xdx . (34)

The second inequality in (32) is obtained in a similar fashion. QED

46 of 275



We now return to

V̇ = −
Z 1

0
w2
xdx .

Using Poincare inequality along with boundary conditions w(0) = w(1) = 0, we get

V̇ = −
Z 1

0
w2
xdx≤−

1
4

Z 1

0
w2 ≤−

1
2
V (35)

which, by the basic comparison principle for first order differential inequalities, implies that

V (t) ≤V (0)e−t/2, (36)

or

‖w(t)‖ ≤ e−t/4‖w0‖ (37)

Thus, the system (25)–(27) is exponentially stable in L2.

47 of 275



xt

w(x, t)

Response of a heat equation to a non-smooth initial condition.

The “instant smoothing” effect is the characteristic feature of the diffusion operator that
dominates the heat equation.

48 of 275



Pointwise-in-Space Boundedness and Stability in Higher Norms

We established that

‖w‖ → 0 as t → ∞

but this does not imply that w(x, t) goes to zero for each x ∈ (0,1).

Are there “unbounded spikes” for some x along the spatial domain (on a set of
measure zero) which do not contribute to the L2 norm?

It would be desirable to show that

max
x∈[0,1]

|w(x, t)|≤ e−
t
4 max
x∈[0,1]

|w(x,0)| , (38)

namely, stability in the spatial L∞ norm. But this is possible only in some special cases and
not worth our attention in a course that focuses on basic but generally applicable tools.

49 of 275



However, it is easy to show a more restrictive result than (38), given by

max
x∈[0,1]

|w(x, t)|≤ Ke−
t
2‖w0‖H1 (39)

for some K > 0, where the H1 norm is defined by

‖w‖2
H1

:=

√
Z 1

0
w2dx+

Z 1

0
w2
xdx (40)

Remark 2 The H1 norm can be defined in different ways, the definition given above suits
our needs. Note also that by using the Poincare inequality, it is possible to drop the first
integral in (40) for most problems.

50 of 275



Before we proceed to prove (39), we need the following result.

Lemma 2 (Agmon’s Inequality) For a function w ∈H1, the following inequalities hold

max
x∈[0,1]

|w(x, t)|2 ≤ w(0)2 +2‖w(t)‖‖wx(t)‖

max
x∈[0,1]

|w(x, t)|2 ≤ w(1)2 +2‖w(t)‖‖wx(t)‖
(41)

Proof.
Z x

0
wwxdx=

Z x

0
∂x

1
2
w2dx

=
1
2
w2|x0

=
1
2
w(x)2−

1
2
w(0)2. (42)

Taking the absolute value on both sides and using the triangle inequality gives

1
2
|w(x)2|≤

Z x

0
|w||wx|dx+

1
2
w(0)2. (43)

51 of 275



Using the fact that an integral of a positive function is an increasing function of its upper
limit, we rewrite the last inequality as

|w(x)|2 ≤ w(0)2 +2
Z 1

0
|w(x)||wx(x)|dx. (44)

The right hand side of this inequality does not depend on x and therefore

max
x∈[0,1]

|w(x)|2 ≤ w(0)2 +2
Z 1

0
|w(x)||wx(x)|dx. (45)

Using the Cauchy-Schwartz Inequality we get the first inequality of (41). The second in-
equality is obtained in a similar fashion. QED

52 of 275



The simplest way to prove maxx∈[0,1] |w(x, t)| ≤ Ke−
t
2‖w0‖H1 is to use the following Lya-

punov function

V1 =
1
2

Z 1

0
w2dx+

1
2

Z 1

0
w2
x dx . (46)

The time derivative of (46) is given by

V̇1 ≤−‖wx‖2−‖wxx‖2 ≤−‖wx‖2

≤−
1
2
‖wx‖2−

1
2
‖wx‖2

≤−
1
8
‖w‖2−

1
2
‖wx‖2 (using (35))

≤−
1
4
V1.

Therefore,

‖w‖2 +‖wx‖2 ≤ e−t/2
(

‖w0‖2 +‖w0,x‖2
)

, (47)

and using Young’s and Agmon’s inequalities we get

max
x∈[0,1]

|w(x, t)|2 ≤ 2‖w‖‖wx‖

≤ ‖w‖2 +‖wx‖2

≤ e−t/2
(

‖w0‖2 +‖wx,0‖2
)

. (48)

53 of 275



We have thus showed that

w(x, t) → 0 as t → ∞

for all x ∈ [0,1].

54 of 275



Example 1 Consider the diffusion- advection equation

wt = wxx+ wx (49)
wx(0) = 0 (50)
w(1) = 0 . (51)

Using the Lyapunov function (28) we get

V̇ =
Z 1

0
wwtdx

=
Z 1

0
wwxxdx+

Z 1

0
wwxdx

= wwx|10−
Z 1

0
w2
xdx+

Z 1

0
wwxdx (integration by parts)

= −
Z 1

0
w2
xdx+

1
2
w2|10

= −
Z 1

0
w2
xdx+

"
"

"
"

"
""1

2
w2(0)−

1
2
w2(0)

= −
Z 1

0
w2
xdx−

1
2
w2(0) .

55 of 275



Finally, using the Poincare inequality (32) we get

V̇ ≤−
1
4
‖w‖2 ≤−

1
2
V , (52)

proving the exponential stability in L2 norm,

‖w(t)‖ ≤ e−t/4‖w0‖.

56 of 275



Summary on Lyapunov function calculations so far

It might appear that we are not constructing any non-trivial Lyapunov functions
but only using the “diagonal” Lyapunov functions that do not involve any “cross-
terms.”

This is actually not the case with the remainder of the course. While so far we have studied
only Lyapunov functions that are plain spatial norms of functions, in the sequel we are
going to be constructing changes of variables for the PDE states. The Lyapunov functions
will be employing the norms of the transformed state variables, which means that in the
original PDE state our Lyapunov functions will be complex, sophisticated constructions
that include ‘non-diagonal’ and ‘cross-term’ effects.

57 of 275



Homework

1. Prove the second inequalities in (32) and (41).

2. Consider the heat equation

wt = wxx

for x ∈ (0,1) with the initial condition w0(x) = w(x,0) and boundary conditions

wx(0) = 0

wx(1) = −
1
2
w(1) .

Show that

‖w(t)‖ ≤ e−
t
4‖w0‖ .

58 of 275



3. Consider the Burgers equation

wt = wxx−wwx

for x ∈ (0,1) with the initial condition w0(x) = w(x,0) and boundary conditions

w(0) = 0

wx(1) = −
1
6

(

w(1)+w3(1)
)

.

Show that

‖w(t)‖ ≤ e−
t
4‖w0‖ .

Hint: complete the squares.

59 of 275



Exact Solutions to PDEs

60 of 275



In general, seeking explicit solutions to partial differential equations is a hopeless pursuit.

But closed-form solutions can be found for some linear PDE systems with constant coeffi-
cients.

The solution does not only provide us with an exact formula for a given initial condition, but
also gives insight into the spatial structure (smooth or ripply) and the temporal evolution
(monotonic or oscillating) of the PDE.

61 of 275



Separation of Variables

Consider the reaction-diffusion equation

ut = uxx+λu (53)

with boundary conditions

u(0) = 0 (54)
u(1) = 0 (55)

and initial condition u(x,0) = u0(x).

The most frequently used method to obtain solutions to PDEs with constant coefficients is
the method of separation of variables (the other common method employs Laplace trans-
form).

62 of 275



Let us assume that the solution u(x, t) can be written as

u(x, t) = X(x)T (t) . (56)

If we substitute the solution (56) into the PDE (53), we get

X(x)Ṫ (t) = X ′′(x)T (t)+λX(x)T (t). (57)

Gathering the like terms on the opposite sides yields

Ṫ (t)
T (t)

=
X ′′(x)+λX(x)

X(x)
. (58)

Since the function on the left depends only on time and the function on the right depends
only on the spatial variable, the equality can only hold if both functions are constant. Let
us denote this constant by σ.

63 of 275



We then get two ODEs:

Ṫ = σT (59)

with initial condition T (0) = T0, and

X ′′+(λ−σ)X = 0 (60)

with boundary conditionsX(0) =X(1)= 0 (they follow from the PDE boundary conditions).

The solution to (59) is given by

T = T0eσt. (61)

The solution to (60) has the form

X(x) = Asin(
√

λ−σx)+Bcos(
√

λ−σx), (62)

where A and B are constants that should be determined from the boundary conditions.

64 of 275



We have:

X(0) = 0 ⇒ B= 0 ,

X(1) = 0 ⇒ Asin(
√

λ−σ) = 0 .

The last equality can only hold true if
√
λ−σ = πn for n= 0,1,2, . . ., so that

σ= λ−π2n2, n= 0,1,2, . . . (63)

Substituting (61), (62) into (56) yields

un(x, t) = T0Ane(λ−π
2n2)t sin(πnx), n= 0,1,2, . . . (64)

For linear PDEs the sum of particular solutions is also a solution (the principle of superpo-
sition). Therefore the formal general solution of (53)–(55) is given by

u(x, t) =
∞

∑
n=0

Cne(λ−π
2n2)t sin(πnx) (65)

whereCn = AnT0.
65 of 275



To determine the constants Cn, let us set t = 0 in (65) and multiply both sides of the
resulting equality with sin(πmx):

u0(x)sin(πmx) = sin(πmx)
∞

∑
n=1

Cn sin(πnx) . (66)

Then, using the identity
Z 1

0
sin(πmx)sin(πnx)dx=

{

1/2 n= m
0 n .= m

}

(67)

we get

Cn =
1
2

Z 1

0
u0(x)sin(πnx)dx . (68)

Substituting this expression into (65), we get

u(x, t) = 2
∞

∑
n=1

e(λ−π
2n2)t sin(πnx)

Z 1

0
sin(πnx)u0(x)dx (69)

66 of 275



Even though we obtained this solution formally, it can be proved that this is indeed a well
defined solution in a sense that it is unique, has continuous spatial derivatives up to a
second order, and depends continuously on the initial data.

Let us look at the structure of this solution. It consists of the following elements:

• eigenvalues (all real): λ−π2n2, n= 1,2, . . .

• eigenfunctions: sin(πnx)

• effect of initial conditions:
R 1

0 sin(πnx)u0(x)dx

67 of 275



The largest eigenvalue λ−π2 (n= 1) indicates the rate of growth or decay of the solution.
We can see that the plant is stable for λ≤ π2 and is unstable otherwise.

After the transient response due to the initial conditions, the profile of the state will be
proportional to the first eigenfunction sin(πx), since other modes decay much faster.

68 of 275



Sometimes it is possible to use the method of separation of variables to determine the
stability properties of the plant even though the complete closed form solution cannot be
obtained.

Example 2 Let us find the values of the parameter g for which the system

ut = uxx+gu(0) (70)
ux(0) = 0 (71)
u(1) = 0 (72)

is unstable.

This example is motivated by the model of thermal instability in solid propellant rockets,
where the term gu(0) is roughly the burning of the propellant at one end of the fuel cham-
ber.

69 of 275



Using the method of separation of variables we set u(x, t) = X(x)T (t) and (70) gives:

Ṫ (t)
T (t)

=
X ′′(x)+gX(0)

X(x)
= σ . (73)

Hence, T (t) = T (0)eσt , whereas the solution of the ODE for X is given by

X(x) = Asinh(
√
σx)+Bcosh(

√
σx)+

g
σ
X(0) . (74)

Here the last term is a particular solution of a nonhomogeneous ODE (73).

Now we find the constant B in terms of X(0) by setting x = 0 in the above equation. This
gives B= X(0)(1−g/σ).

Using the boundary condition (71) we get A= 0 so that

X(x) = X(0)
[g
σ

+
(

1−
g
σ

)

cosh(
√
σx)
]

. (75)

70 of 275



Using the other boundary condition (72), we get the eigenvalue relationship
g
σ

=
(g
σ
−1
)

cosh(
√
σ) . (76)

The above equation has no closed form solution. However, in this particular example we
can still find the stability region by finding values of g for which there are eigenvalues with
zero real parts. First we check if σ= 0 satisfies (76) for some values of g.

Using the Taylor expansion for cosh(
√
σ), we get

g
σ

=
(g
σ
−1
)(

1+
σ
2

+O(σ2)
)

=
g
σ
−1+

g
2
−
σ
2

+O(σ), (77)

which gives

g→ 2 as σ→ 0

71 of 275



To show that there are no other eigenvalues on the imaginary axis, we set σ = 2 jy2, y > 0. Equation (76)
then becomes

cosh(( j+1)y) =
g

g−2 jy2

cos(y)cosh(y)+ j sin(y)sinh(y) =
g2 +2 jgy2

g2 +4y4 .

Taking the absolute value, we get

sinh(y)2 + cos(y)2 =
g4 +4g2y4

(g2 +4y4)2 . (78)

The only solution to this equation is y= 0, which can be seen by computing derivatives of both sides of (78):

d
dy

(sinh(y)2 + cos(y)2) = sinh(2y)− sin(2y) > 0 for all y> 0 (79)

d
dy

g4 +4g2y4

(g2 +4y4)2 = −
16g2y3

(g2 +4y4)2 < 0 for all y> 0 . (80)

Therefore, both sides of (78) start at the same point at y= 0 and for y > 0 the left hand side monotonically
grows while the right hand side monotonically decays.

We thus proved that the plant (70)–(72) is neutrally stable only when g= 2.

SUMMARY: the plant is stable for g< 2 and unstable for g> 2.
72 of 275



Notes and References

The method of separation of variables is discussed in detail in classical PDE texts

R. COURANT AND D. HILBERT,Methods of mathematical physics, New York, Interscience
Publishers, 1962.

E. ZAUDERER, Partial differential equations of applied mathematics, New York : Wiley,
2nd ed., 1998.

The exact solutions for many problems can be found in

H. S. CARSLAW AND J. C. JAEGER, Conduction of Heat in Solids, Oxford, Clarendon
Press, 1959.

A. D. POLIANIN, Handbook of Linear Partial Differential Equations for Engineers and
Scientists, Boca Raton, Fla, Chapman and Hall/CRC, 2002.

73 of 275



Transform methods for PDEs are studied extensively in

D. G. DUFFY, Transform methods for solving partial differential equations, Boca Raton,
FL : CRC Press, 1994.

74 of 275



Homework

1. Consider the Reaction-Diffusion equation

ut = uxx+λu
for x ∈ (0,1) with the initial condition u0(x) = u(x,0) and boundary conditions

ux(0) = 0
u(1) = 0 .

1) Find the solution of this PDE.

2) For what values of the parameter λ is this system unstable?

2. Consider the heat equation

ut = uxx
with Robin’s boundary conditions

ux(0) = −qu(0)

u(1) = 0 .

Find the range of values of the parameter q for which this system is unstable.

75 of 275



Backstepping for Parabolic PDEs

(Reaction-Advection-Diffusion and Other Equations)

76 of 275



The most important part of this course.

We introduce the method of backstepping, using the class of parabolic PDEs.

Later we extend backstepping to 1st and 2nd-order hyperbolic PDEs and to other classes.

Parabolic PDEs are first order in time and, while they can have a large number of unstable
eigenvalues, this number is finite, which makes them more easily accessible to a reader
with background in ODEs.

77 of 275



Backstepping is capable of eliminating destabilizing forces/terms acting in the domain’s
interior, using control that acts only on the boundary.

We build a state transfornation, which involves a Volterra integral operator that ‘absorbs’
the destabilizing terms acting in the domain and brings them to the boundary, where control
can eliminate them.

The Volterra operator has a lower triangular structure.

78 of 275



ODE Backstepping

The backstepping method and its name originated in the early 1990’s for stabilization of
nonlinear ODE systems

M. KRSTIC, I. KANELLAKOPOULOS, AND P. KOKOTOVIC, Nonlinear and Adaptive
Control Design, Wiley, New York, 1995.

79 of 275



Consider the following three-state nonlinear system

ẏ1 = y2 + y3
1 (81)

ẏ2 = y3 + y3
2 (82)

ẏ3 = u+ y3
3 (83)

Since the control input u is only in the last equation (83), we view it as boundary control.

The nonlinear terms y3
1, y

3
2, y

3
3 can be viewed as nonlinear “reaction” terms. They are

destabilizing because, for u = 0, the overall system is a “cascade” of three unstable sub-
systems of the form ẏi = y3

i (the open-loop system exhibits a finite-time escape instability).

The control u can cancel the “matched” term y3
3 in (83) but cannot cancel directly the

unmatched terms y3
1 and y

3
2 in (81), (83).

80 of 275



To achieve the cancellation of all three of the destabilizing y3
i -terms, a backstepping change

of variable is constructed recursively,

z1 = y1 (84)
z2 = y2 + y3

1 + cy1 (85)
z3 = y3 + y3

2 +(3y2
1 +2c)y2 +3y5

1 +2cy3
1 +(c2 +1)y1 , (86)

along with the control law

u = −c3z3− z2− y3
3− (3y2

2 +3y2
1 +2c)(y3 + y3

2)

− (6y1y2 +15y4
1 +6cy2

1 + c2 +1)(y2 + y3
1) , (87)

which convert the system (81)–(83) into

ż1 = z2− cz1 (88)
ż2 = −z1 + z3− cz2 (89)
ż3 = −z2− cz3 , (90)

where the control parameter c should be chosen positive.

81 of 275



The system (88)–(90), which can also be written as

ż= Az (91)

where

A=





−c 1 0
−1 −c 1
0 −1 −c



 , (92)

is exponentially stable because

A+AT = −cI . (93)

The equality (93) guarantees that the Lyapunov function

V =
1
2
zT z (94)

has a negative definite time derivative

V̇ = −czT z= −2cV . (95)

Hence, the target system (88)–(90) is desirable.

82 of 275



Let us first examine the change of variables y /→ z in (84)–(86):

z1 = y1

z2 = y2 + y3
1 + cy1

z3 = y3 + y3
2 +(3y2

1 +2c)y2 +3y5
1 +2cy3

1 +(c2 +1)y1

This change of variables is of the form

z= (I−K)[y], (96)

where I is the identity matrix and K is a “lower-triangular” nonlinear transformation.

The lower-triangular structure of K is a finite-dimensional analog of the spatially-causal
Volterra integral operator

K[u](x) !
Z x

0
k(x,y)u(y)dy (97)

Hence, for PDEs, in analogy with (96), we use the change of variable

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy. (98)

83 of 275



An important feature of the change of variable

z1 = y1

z2 = y2 + y3
1 + cy1

z3 = y3 + y3
2 +(3y2

1 +2c)y2 +3y5
1 +2cy3

1 +(c2 +1)y1

is that it is invertible, i.e., y can be expressed as a smooth function of z (to be specific,

y1 = z1
y2 = z2− z31− cz1
y3 = z3− · · ·

In the PDE case, the transformation u /→ w in (98) is also invertible and the inverse can be
written as

u(x) = w(x)+
Z x

0
l(x,y)w(y)dy. (99)

84 of 275



Next, let us examine the relation between the target systems

ż= Az , A=





−c 1 0
−1 −c 1
0 −1 −c



 (100)

and the heat equation as a target system for parabolic PDEs,

wt = wxx . (101)

They both admit a simple 2-norm as a Lyapunov function, specifically,

d
dt

1
2
zT z= −czT z (102)

in the ODE case and
d
dt

1
2

Z 1

0
w(x)2dx= −

Z 1

0
wx(x)2dx (103)

in the PDE case.

85 of 275



Backstepping for PDEs—the Main Idea

Start with one of the simplest unstable PDEs, the reaction-diffusion equation:

ut(x, t) = uxx(x, t)+ λu(x, t) (104)
u(0, t) = 0 (105)
u(1, t) = U(t) = control (106)

The open-loop system (104), (105) (with u(1, t) = 0) is unstable with arbitrarily many un-
stable eigenvalues for sufficiently large λ> 0.

Since the term λu is the source of instability, the natural objective for a boundary feedback
is to “eliminate” this term.

86 of 275



State transformation

w(x, t) = u(x, t)−
Z x

0
k(x,y)u(y, t)dy (107)

Feedback control

u(1, t) =
Z 1

0
k(1,y)u(y, t)dy (108)

Target system (exp. stable)

wt(x, t) = wxx(x, t) (109)
w(0, t) = 0 (110)
w(1, t) = 0 (111)

Task: find kernel k(x,y).

87 of 275



The Volterra integral transformation in (107) has the following features:

The limits of integral are from 0 to x, not from 0 to 1.

“Spatially causal,” that is, for a given x the right hand side of (107) depends only
on the values of u in the interval [0,x].

Invertible because of the presence of the identity operator and the spatial causal-
ity of the Volterra operator. Because of invertibility, stability of the target system
translates into stability of the closed loop system consisting of the plant plus
boundary feedback.

88 of 275



Gain Kernel PDE

Task: find the function k(x,y) (which we call “gain kernel”) that makes the plant (104), (105)
with the controller (108) equivalent to the target system (109)–(111).

We introduce the following notation:

kx(x,x) =
∂
∂x
k(x,y)|y=x

ky(x,x) =
∂
∂y
k(x,y)|y=x

d
dx
k(x,x) = kx(x,x)+ ky(x,x).

89 of 275



Differentiate the transformation (107) with respect to x and t using Leibnitz’s rule

d
dx

Z x

0
f (x,y)dy= f (x,x)+

Z x

0
fx(x,y)dy .

Differentiating the transformation (107) with respect to x gives

wx(x) = ux(x)− k(x,x)u(x)−
Z x

0
kx(x,y)u(y)dy

wxx(x) = uxx(x)−
d
dx

(k(x,x)u(x))− kx(x,x)u(x)−
Z x

0
kxx(x,y)u(y)dy

= uxx(x)−u(x)
d
dx
k(x,x)− k(x,x)ux(x)− kx(x,x)u(x)

−
Z x

0
kxx(x,y)u(y)dy . (112)

90 of 275



Next, we differentiate the transformation (107) with respect to time:

wt(x) = ut(x)−
Z x

0
k(x,y)ut(y)dy

= uxx(x)+λu(x)−
Z x

0
k(x,y)

(

uyy(y)+λu(y)
)

dy

= uxx(x)+λu(x)− k(x,x)ux(x)+ k(x,0)ux(0)

+
Z x

0
ky(x,y)uy(y)dy−

Z x

0
λk(x,y)u(y)dy (integration by parts)

= uxx(x)+λu(x)− k(x,x)ux(x)+ k(x,0)ux(0)+ ky(x,x)u(x)− ky(x,0)u(0)

−
Z x

0
kyy(x,y)u(y)dy−

Z x

0
λk(x,y)u(y)dy . (integration by parts) (113)

Subtracting (112) from (113), we get

wt−wxx =

[

λ+2
d
dx
k(x,x)

]

u(x)+ k(x,0)ux(0)

+
Z x

0

(

kxx(x,y)− kyy(x,y)−λk(x,y)
)

u(y)dy

= 0

91 of 275



For this to hold for all u, three conditions have to be satisfied:

kxx(x,y)− kyy(x,y)−λk(x,y) = 0 (114)
k(x,0) = 0 (115)

λ+2
d
dx
k(x,x) = 0. (116)

We simplify (116) by integrating it with respect to x and noting from (115) that k(0,0) = 0,
which gives us

kxx(x,y)− kyy(x,y) = λk(x,y)
k(x,0) = 0

k(x,x) = −
λ
2
x

(117)

92 of 275



These three conditions form a well posed PDE of hyperbolic type in the “Goursat form.”

One can think of the k-PDE as a wave equation with an extra term λk.

x plays the role of time and y of space.

In quantum physics such PDEs are called Klein-Gordon PDEs.

93 of 275



Domain of the PDE for gain kernel k(x,y).

The boundary conditions are prescribed on hypotenuse and the lower cathetus of the
triangle.

The value of k(x,y) on the vertical cathetus gives us the control gain k(1,y).

94 of 275



Converting Gain Kernel PDE to an Integral Equation

To find a solution of the k-PDE (117) we first convert it into an integral equation.

Introducing the change of variables

ξ= x+ y, η= x− y (118)

we have

k(x,y) = G(ξ,η)

kx = Gξ+Gη
kxx = Gξξ+2Gξη+Gηη
ky = Gξ−Gη
kyy = Gξξ−2Gξη+Gηη .

95 of 275



Thus, the gain kernel PDE becomes

Gξη(ξ,η) =
λ
4
G(ξ,η) (119)

G(ξ,ξ) = 0 (120)

G(ξ,0) = −
λ
4
ξ . (121)

Integrating (119) with respect to η from 0 to η, we get

Gξ(ξ,η) = Gξ(ξ,0)+
Z η

0

λ
4
G(ξ,s)ds = −

λ
4

+
Z η

0

λ
4
G(ξ,s)ds . (122)

Next, we integrate (122) with respect to ξ from η to ξ to get the integral equation

G(ξ,η) = −
λ
4
(ξ−η)+

λ
4

Z ξ

η

Z η

0
G(τ,s)dsdτ (123)

The G-integral eqn is easier to analyze than the k-PDE.

96 of 275



Method of Successive Approximations

Start with an initial guess

G0(ξ,η) = 0 (124)

and set up the recursive formula for (123) as follows:

Gn+1(ξ,η) = −
λ
4
(ξ−η)+

λ
4

Z ξ

η

Z η

0
Gn(τ,s)dsdτ (125)

If this functional iteration converges, we can write the solution G(ξ,η) as

G(ξ,η) = lim
n→∞

Gn(ξ,η) . (126)

97 of 275



Let us denote the difference between two consecutive terms as

ΔGn(ξ,η) = Gn+1(ξ,η)−Gn(ξ,η) . (127)

Then

ΔGn+1(ξ,η) =
λ
4

Z ξ

η

Z η

0
ΔGn(τ,s)dsdτ (128)

and (126) can be alternatively written as

G(ξ,η) =
∞

∑
n=0

ΔGn(ξ,η) . (129)

Computing ΔGn from (128) starting with

ΔG0 = G1(ξ,η) = −
λ
4
(ξ−η) , (130)

we can observe the pattern which leads to the following formula:

ΔGn(ξ,η) = −
(ξ−η)ξnηn

n!(n+1)!

(
λ
4

)n+1
(131)

This formula can be verified by induction.
98 of 275



The solution to the integral equation is given by

G(ξ,η) = −
∞

∑
n=0

(ξ−η)ξnηn

n!(n+1)!

(
λ
4

)n+1
. (132)

To compute the series (132), note that a first order modified Bessel function of the first kind
can be represented as

I1(x) =
∞

∑
n=0

(x/2)2n+1

n!(n+1)!
. (133)

99 of 275



ASIDE: Modified Bessel Functions In
The function y(x) = In(x) is a solution to the following ODE

x2y′′+ xy′ − (x2 +n2)y= 0 (134)

Series representation

In(x) =
∞

∑
m=0

(x/2)n+2m

m!(m+n)!
(135)

Properties

2nIn(x) = x(In−1(x)− In+1(x)) (136)

In(−x) = (−1)nIn(x) (137)

100 of 275



Differentiation
d
dx
In(x) =

1
2
(In−1(x)+ In+1(x)) =

n
x
In(x)+ In+1(x) (138)

d
dx

(xnIn(x)) = xnIn−1,
d
dx

(x−nIn(x)) = x−nIn+1 (139)

Asymptotic properties

In(x) ≈
1
n!

(x
2

)n
, x→ 0 (140)

In(x) ≈
ex√
2πx

, x→ ∞ (141)

101 of 275



0 1 2 3 4 5

0

2

4

6

8

10
I0 I1 I2 I3

x

Modified Bessel functions In.

102 of 275



Comparing (135) with (132) we obtain

G(ξ,η) = −
λ
2
(ξ−η)

I1(
√

λξη)
√

λξη
(142)

or, returning to the original x, y variables,

k(x,y) = −λy
I1
(√

λ(x2− y2)

)

√

λ(x2− y2)
(143)

103 of 275



k1(y)

y

λ = 10

λ = 15

λ = 20

λ = 25

0 0.2 0.4 0.6 0.8 1
-40

-30

-20

-10

0

Control gain k(1,y) for different values of λ

As λ gets larger, the plant becomes more unstable which requires more control effort.

Low gain near the boundaries is logical: near x= 0 the state is small even without control
because of the boundary condition u(0) = 0; near x= 1 the control has the most impact.

104 of 275



Inverse Transformation

We need to establish that stability of the w-target system (109)–(111) implies
stability of the u-closed-loop system (104), (105), (108), by showing that the
transformation u /→ w is invertible.

Postulate an inverse transformation in the form

u(x) = w(x)+
Z x

0
l(x,y)w(y)dy , (144)

where l(x,y) is the transformation kernel.

Given the direct transformation (107) and the inverse transformation (144), the kernels
k(x,y) and l(x,y) satisfy

l(x,y) = k(x,y)+
Z x

y
k(x,ξ)l(ξ,y)dξ (145)

105 of 275



Proof of (145). First recall from calculus the following formula for changing the order of
integration:

Z x

0

Z y

0
f (x,y,ξ)dξdy=

Z x

0

Z x

ξ
f (x,y,ξ)dydξ (146)

Substituting (144) into (107), we get

w(x) = w(x)+
Z x

0
l(x,y)w(y)dy−

Z x

0
k(x,y)

[

w(y)+
Z y

0
l(y,ξ)w(ξ)dξ

]

dy

= w(x)+
Z x

0
l(x,y)w(y)dy−

Z x

0
k(x,y)w(y)dy−

Z x

0

Z y

0
k(x,y)l(y,ξ)w(ξ)dξdy

0 =
Z x

0
w(y)

[

l(x,y)− k(x,y)−
Z x

y
k(x,ξ)l(ξ,y)dξ

]

dy .

Since the last line has to hold for all w(y), we get the relationship (145). "

106 of 275



The formula (145) is general (it does not depend on the plant and the target system) but is
not very helpful in actually finding l(x,y) from k(x,y).

Instead, we follow the same approach that led us to the kernel PDE for k(x,y).

Differentiating (144) with respect to time we get

ut(x) = wt(x)+
Z x

0
l(x,y)wt(y)dy

= wxx(x)+ l(x,x)wx(x)− l(x,0)wx(0)− ly(x,x)w(x)

+
Z x

0
lyy(x,y)w(y)dy (147)

and differentiating twice with respect to x gives

uxx(x) = wxx(x)+ lx(x,x)w(x)+w(x)
d
dx
l(x,x)+ l(x,x)wx(x)

+
Z x

0
lxx(x,y)w(y)dy . (148)

107 of 275



Subtracting (148) from (147) we get

λw(x)+λ
Z x

0
l(x,y)w(y)dy = −2w(x)

d
dx
l(x,x)− l(x,0)wx(0)

+
Z x

0
(lyy(x,y)− lxx(x,y))w(y)dy

which gives the following conditions on l(x,y):

lxx(x,y)− lyy(x,y) = −λl(x,y)
l(x,0) = 0

l(x,x) = −
λ
2
x

(149)

Comparing this PDE with the PDE (117) for k(x,y), we see that

l(x,y;λ) = −k(x,y;−λ) . (150)

108 of 275



From (143) we have

l(x,y) = −λy
I1
(√

−λ(x2− y2)

)

√

−λ(x2− y2)
= −λy

I1
(

j
√

λ(x2− y2)

)

j
√

λ(x2− y2)
,

or, using the properties of I1,

l(x,y) = −λy
J1

(√

λ(x2− y2)

)

√

λ(x2− y2)
(151)

109 of 275



ASIDE: Bessel Functions Jn
The function y(x) = Jn(x) is a solution to the following ODE

x2y′′+ xy′+(x2−n2)y= 0 (152)

Series representation

Jn(x) =
∞

∑
m=0

(−1)m(x/2)n+2m

m!(m+n)!
(153)

Relationship with Jn(x)

In(x) = i−nJn(ix), In(ix) = inJn(x) (154)

Properties

2nJn(x) = x(Jn−1(x)+ Jn+1(x)) (155)

Jn(−x) = (−1)nJn(x) (156)

110 of 275



Differentiation
d
dx
Jn(x) =

1
2
(Jn−1(x)− Jn+1(x)) =

n
x
Jn(x)− Jn+1(x) (157)

d
dx

(xnJn(x)) = xnJn−1,
d
dx

(x−nJn(x)) = −x−nJn+1 (158)

Asymptotic properties

Jn(x) ≈
1
n!

(x
2

)n
, x→ 0 (159)

Jn(x) ≈
√

2
πx

cos
(

x−
πn
2
−
π
4

)

, x→ ∞ (160)

111 of 275



0 2 4 6 8 10
−0.5

0

0.5

1

J1

J0

J3
J2

x

Bessel functions Jn.

112 of 275



Summary of control design for the reaction-diffusion equation

Plant ut = uxx+λu (161)
u(0) = 0 (162)

Controller u(1) = −
Z 1

0
yλ
I1
(√

λ(1− y2)

)

√

λ(1− y2)
u(y)dy (163)

Transformation w(x) = u(x)+
Z x

0
λy
I1
(√

λ(x2− y2)

)

√

λ(x2− y2)
u(y)dy (164)

u(x) = w(x)−
Z x

0
λy
J1

(√

λ(x2− y2)

)

√

λ(x2− y2)
w(y)dy (165)

Target system wt = wxx (166)
w(0) = 0 (167)
w(1) = 0 (168)

113 of 275



0

0.5

1 0
0.05

0.1
0

10

20

30

40

tx

u

Open-loop response for reaction-diffusion plant (161), (162) for the case λ= 20.
The plant has one unstable eigenvalue 20−π2 ≈ 10.

114 of 275



0
0.5

1 0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

0

10

20

tx

u

Closed-loop response with controller (163) implemented.

115 of 275



0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

0

10

t

u(1, t)

The control (163) for reaction-diffusion plant (161)–(162).

116 of 275



Example 3 Consider the plant with a Neumann boundary cond. on the uncontrolled end,

ut = uxx+λu (169)
ux(0) = 0 (170)
u(1) = U(t) . (171)

We use the transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy (172)

to map this plant into the target system

wt = wxx (173)
wx(0) = 0 (174)
w(1) = 0 . (175)

117 of 275



Differentiation of the transformation (172) with respect to x gives (112) (it does not depend
on the particular plant). Differentiating (172) with respect to time, we get

wt(x) = ut(x)−
Z x

0
k(x,y)ut(y)dy

= uxx(x)+λu(x)−
Z x

0
k(x,y)[uyy(y)+λu(y)]dy

= uxx(x)+λu(x)− k(x,x)ux(x)+ k(x,0)ux(0)

+
Z x

0
ky(x,y)uy(y)dy−

Z x

0
λk(x,y)u(y)dy (integration by parts)

= uxx(x)+λu(x)− k(x,x)ux(x)+ ky(x,x)u(x)− ky(x,0)u(0) (176)

−
Z x

0
kyy(x,y)u(y)dy−

Z x

0
λk(x,y)u(y)dy (integration by parts)

118 of 275



Subtracting (112) from (176), we get

wt−wxx =

[

λ+2
d
dx
k(x,x)

]

u(x)− ky(x,0)u(0)

+
Z x

0

(

kxx(x,y)− kyy(x,y)−λk(x,y)
)

u(y)dy . (177)

For the right hand side of this equation to be zero for all u(x), three conditions must be
satisfied:

kxx(x,y)− kyy(x,y)−λk(x,y) = 0 (178)
ky(x,0) = 0 (179)

λ+2
d
dx
k(x,x) = 0 . (180)

Integrating (180) with respect to x gives k(x,x) = −λ/2x+ k(0,0), where k(0,0) is ob-
tained using the boundary condition (174):

wx(0) = ux(0)+ k(0,0)u(0) = 0 ,

so that k(0,0) = 0. The gain kernel PDE is thus

kxx(x,y)− kyy(x,y) = λk(x,y) (181)
ky(x,0) = 0 (182)

k(x,x) = −
λ
2
x . (183)

119 of 275



Note that this PDE is very similar to (117). The only difference is in the boundary condi-
tion at y = 0. The solution to the PDE (181)–(183) is obtained through a summation of
successive approximation series, similarly to the way it was obtained for the PDE (117):

k(x,y) = −λ x©
I1
(√

λ(x2− y2)

)

√

λ(x2− y2)
(184)

Thus, the controller is given by

u(1) = −
Z 1

0
λ
I1
(√

λ(1− y2)

)

√

λ(1− y2)
u(y)dy . (185)

120 of 275



Neumann Actuation

Consider the plant (104), (105) but with the heat flux ux(1) actuated:

ut = uxx+λu (186)
u(0) = 0 (187)

ux(1) = U(t) . (188)

We use the same transformation (107), (143) as we used in the case of Dirichlet actuation.
To obtain the control ux(1), we need to differentiate (107) with respect to x:

wx(x) = ux(x)− k(x,x)u(x)−
Z x

0
kx(x,y)u(y)dy

and set x = 1. It is clear now that the target system has to have the Neumann boundary
condition at x= 1:

wt = wxx (189)
w(0) = 0 (190)
wx(1) = 0 , (191)

which gives the controller

ux(1) = k(1,1)u(1)+
Z 1

0
kx(1,y)u(y)dy . (192)

121 of 275



All that remains is to derive the expression for kx from (143) using the properties of Bessel
functions:

kx(x,y) = −λyx
I2
(√

λ(x2− y2)

)

x2− y2 .

Finally, the controller is

ux(1) = −
λ
2
u(1)−

Z 1

0
λy
I2
(√

λ(1− y2)

)

1− y2 u(y)dy. (193)

122 of 275



Reaction-Advection-Diffusion Equation

ut = εuxx+bux+λu (194)
u(0) = 0 (195)
u(1) = U(t) (196)

First, we eliminate the advection term ux with the following change of variable:

v(x) = u(x)e
b
2εx (197)

Taking the temporal and spatial derivatives, we get

ut(x) = vt(x)e−
b
2εx

ux(x) = vx(x)e−
b
2εx−

b
2ε
v(x)e−

b
2εx

uxx(x) = vxx(x)e−
b
2εx−

b
ε
vx(x)e−

b
2εx+

b2

4ε2v(x)e
− b

2εx

123 of 275



In the v-variable we get a reaction-diffusion system

vt = εvxx+

(

λ−
b2

4ε

)

v (198)

v(0) = 0 (199)

v(1) = u(1)e
b
2ε = control. (200)

Now the transformation

w(x) = v(x)−
Z x

0
k(x,y)v(y)dy (201)

leads to the target system

wt = εwxx− cw (202)
w(0) = 0 (203)
w(1) = 0 . (204)

124 of 275



Here the constant c is a design parameter that sets the decay rate of the closed loop
system. It should satisfy the following stability condition:

c≥ max

{

b2

4ε
−λ,0

}

.

The max is used to prevent spending unnecessary control effort when the plant is stable.

125 of 275



The gain kernel k(x,y) can be shown to satisfy the following PDE:

εkxx(x,y)− εkyy(x,y) =

(

λ−
b2

4ε
+ c

)

k(x,y) (205)

k(x,0) = 0 (206)

k(x,x) = −
x
2ε

(

λ−
b2

4ε
+ c

)

. (207)

This equation is exactly the same as (117), just with a different constant instead of λ,

λ0 =
1
ε

(

λ−
b2

4ε
+ c

)

. (208)

Therefore the solution to (205)–(207) is given by

k(x,y) = −λ0y
I1
(√

λ0(x2− y2)

)

√

λ0(x2− y2)
. (209)

126 of 275



The controller is

u(1) =
Z 1

0
e−

b
2ε(1−y)λ0y

I1
(√

λ0(1− y2)

)

√

λ0(1− y2)
u(y)dy . (210)

Let us examine the effect of the advection term bux in (194) on open-loop stability and on
the size of the control gain. From (198) we see that the advection term has a beneficial
effect on open-loop stability, irrespective of the sign of the advection coefficient b. However,
the effect of b on the gain function in the control law in (210) is ‘sign-sensitive.’ Negative
values of b demand much higher control effort than positive values of b. Interestingly,
negative values of b refer to the situation where the state disturbances advect towards the
actuator at x= 1, whereas the ‘easier’ case of positive b refers to the case where the state
disturbances advect away from the actuator at x = 1 and towards the Dirichlet boundary
condition (195) at x= 0.

127 of 275



Reaction-Advection-Diffusion Systems w/ Spatially Varying Coeffs
ut = ε(x)uxx+b(x)ux+λ(x)u (211)

ux(0) = −qu(0) (212)
u(1) = control (213)

Systems with thermal, fluid, and chemically reacting dynamics.

The spatially varying coefficients come from applications with non-homogenous materials,
unusually shaped domains, and can also arise from linearization.

(Also note the mixed boundary condition at x= 0.)

Consider a coordinate change

z=
√
ε0

Z x

0

ds
√

ε(s)
, where ε0 =

(
Z 1

0

ds
√

ε(s)

)−2

(214)

and a change of the state variable

v(z) =
1

4
√

ε(x)
e

x
R

0

b(s)
2ε(s) dsu(x) . (215)

128 of 275



Then v satisfies the PDE:

vt(z, t) = ε0vzz(z, t)+λ0(z)v(z, t) (216)
vz(0, t) = −q0v(0, t), (217)

where

ε0 =

(
Z 1

0

ds
√

ε(s)

)−2

(218)

λ0(z) = λ(x)+
ε′′(x)

4
−
b′(x)

2
−

3
16

(ε′(x))2

ε(x)
+

1
2
b(x)ε′(x)
ε(x)

−
1
4
b2(x)
ε(x)

(219)

q0 = q

√

ε(0)

ε0
−

b(0)

2
√

ε0ε(0)
−

ε′(0)

4
√

ε0ε(0)
. (220)

We use the transformation (107) to map the modified plant into the target system

wt = ε0wzz− cw (221)
wz(0) = 0 (222)
w(1) = 0 . (223)

129 of 275



The transformation kernel is found by solving the PDE

kzz(z,y)− kyy(z,y) =
λ0(y)+ c

ε0
k(z,y) (224)

ky(z,0) = −q0k(z,0) (225)

k(z,z) = −q0−
1

2ε0

Z z

0
(λ0(y)+ c)dy . (226)

Well posed but cannot be solved in closed form. One can solve it either symbolically, using
the successive approximation series, or numerically with finite difference schemes.

Since the controller for v-system is given by

v(1) =
Z 1

0
k(1,y)v(y)dy , (227)

using (214) and (215) we obtain the controller for the original u-plant:

u(1) =
Z 1

0

ε1/4(1)
√
ε0

ε3/4(y)
e
−

1
R

y
b(s)
2ε(s) ds

k
(

Z 1

0

√
ε0
ε(s)

ds,
Z y

0

√
ε0
ε(s)

ds
)

u(y)dy . (228)

130 of 275



ε(x) k(1,y)

x

t

y

‖u(·, t)‖

0 0.1 0.2 0.3 0.4

0 0.5 10 0.5 1

0

1

2

3

4

5

-15

-10

-5

0

0

0.5

1

1.5

2

Simulation results for (211)–(212) with controller (228)
for ε(x) = 1+0.4sin(6πx), b≡ 0, and λ= 10.

131 of 275



Other Spatially Causal Plants

ut = uxx+g(x)u(0)+
Z x

0
f (x,y)u(y)dy (229)

ux(0) = 0 , (230)

where u(1) is actuated.

Equation partly motivated by the model of unstable burning in solid propellant rockets

D. M. BOSKOVIC AND M. KRSTIC, Stabilization of a solid propellant rocket in-
stability by state feedback, Int. J. of Robust and Nonlinear Control, vol. 13,
pp. 483–495, 2003.

and the thermal convection loop

R. VAZQUEZ AND M. KRSTIC, Explicit integral operator feedback for local stabi-
lization of nonlinear thermal convection loop PDEs, Systems and Control Letters,
vol. 55, pp. 624–632, 2006.

132 of 275



PDE for the gain kernel:

kxx− kyy = − f (x,y)+
Z x

y
k(x,ξ) f (ξ,y)dξ (231)

ky(x,0) = g(x)−
Z x

0
k(x,y)g(y)dy (232)

k(x,x) = 0 . (233)

Consider one case where explicitly solvable. Let f ≡ 0, then (231) becomes

kxx− kyy = 0 , (234)

which has a general solution of the form

k(x,y) = φ(x− y)+ψ(x+ y). (235)

From the boundary condition (233) we get

φ(0)+ψ(2x) = 0 , (236)

which means that, without a loss of generality, we can set ψ≡ 0 and φ(0) = 0.

133 of 275



Therefore,

k(x,y) = φ(x− y).

Substituting this expression into the boundary condition (232), we get

φ′(x) = g(x)−
Z x

0
φ(x− y)g(y)dy . (237)

Applying to this equation the Laplace transform with respect to x, we obtain

−sφ(s)+φ(0) = g(s)−φ(s)g(s)

φ(s) =
g(s)

g(s)− s
. (238)

Thus, for any function g(x) one can obtain k(x,y) in closed form.

134 of 275



Example 4 Let

g(x) = g.

Then

g(s) =
g
s
.

and from (238), φ(s) becomes

φ(s) =
g

g− s2
= −

√
g

√g
s2−g

.

This gives

φ(z) = −
√
gsinh(

√
gz)

and

k(x,y) = −√gsinh(
√g(x− y)).

135 of 275



Therefore, for the plant

ut = uxx+gu(0)

ux(0) = 0

the stabilizing controller is given by

u(1) = −
Z 1

0

√gsinh(
√g(1− y))u(y)dy .

136 of 275



Comparison with ODE Backstepping

Difference between ODE and PDE backstepping

A “finer” structural analogy where one might expect the z-system to be a spatial discretiza-
tion of the w-system does not hold. If we discretize the PDE system wt = wxx, with bound-
ary conditions w(0, t) = w(1, t) = 0, over a spatial grid with N points, we get the ODE
system

ẇi = N2(wi+1−2wi+wi−1),

which is different in structure from

żi = zi+1− zi−1− czi,

even after absorbing away the N2 factor (into the time variable). This is where the subtle
difference of the ODE backstepping and the PDE backstepping comes into play. The
recursive procedure used for ODEs does not have a limit as the number of states goes to
infinity. In contrast, the backstepping process for PDEs does have a limit.

Let us try to understand this difference by comparing the plant structure (81)–(83) with the
plant structure ut = uxx+λu. The former is dominated by a chain of integrators, while the

137 of 275



latter is dominated by the diffusion operator. While the diffusion operator is a well-defined,
meaningful object, an “infinite integrator chain” is not. It is for this reason that the infinite-
dimensional backstepping design succeeds only if particular care is taken to convert the
unstable parabolic PDE ut = uxx+λu into a stable target system wt = wxx which is within
the same PDE class, namely, parabolic.

To put it in simpler words, we make sure to retain the ∂xx term in the target system, even
though it may be tempting to go for some other target system, such as, for example, the
first-order hyperbolic (transport equation-like) PDE wt = wx− cw, which is more reminis-
cent of the ODE target system (88)-(90). If such an attempt is made, the derivation of the
PDE conditions for the kernel k(x,y) would not be successful and the matching of terms
between the plant ut = uxx+λu and the target system wt =wxx−cw would result in terms
that cannot be cancelled.

138 of 275



Meaning of the term backstepping

In the ODE setting this procedure is referred to as integrator backstepping because, as
illustrated with the help of example (81)-(83), the design procedure propagates the feed-
back law synthesis “backwards” through a chain of integrators. Upon a careful inspection
of the change of variables (84)–(86), the first “step” of the backstepping procedure is to
treat the state y2 as the control input in the subsystem ẏ1 = y2 + y3

1, design the “control
law” y2 = −y3

1 − cy1, then “step back” through the integrator in the second subsystem
ẏ2 = y3 + y3

2 and design the “control” y3 so that the error state z2 = y2 − (−y3
1 − cy1)

is forced to go zero, thus ensuring that the state y2 acts (approximately) as the control
y2 =−y3

1−cy1. This “backward stepping” through integrators continues until one encoun-
ters the actual control u in (87), which in the example (81)–(83) happens after two steps of
backstepping.

Even though in our continuum version of backstepping for PDEs there are no simple inte-
grators to step through, the analogy with the method for ODEs is in the triangularity of the
change of variable and the pursuit of a stable target system. For this reason, we retain the
term backstepping for PDEs.

139 of 275



Lower-triangular (strict-feedback) systems

Backstepping for ODEs is applicable to a fairly broad class of ODE systems which are
referred to as strict-feedback systems. These systems are characterized by having a chain
of integrators, the control appearing in the last equation, and additional terms (linear or
nonlinear) having a “lower-triangular” structure. In this lower-triangular structure the first
equation depends only on the first state, the term in the second equation depends on the
first and the second states, and so on. In the example (81)–(83) the cubic terms had a
“diagonal” dependence on the states yi and thus, their structure was lower triangular and
hence the plant (81)–(83) was of strict-feedback type. The change of variables (84)–(86)
has a general lower triangular form.

The capability of backstepping to deal with lower-triangular ODE structures has motivated
our extension of PDE backstepping from reaction-diffusion systems (which are of a “di-
agonal” kind) to the systems with lower-triangular strict-feedback terms g(x)u(0, t) and
R x

0 f (x,y)u(y, t)dy. Such terms, besides being tractable by the backstepping method,
happen to be essential in several applications, including flexible beams and Navier-Stokes
equations.

140 of 275



Notes and References

The backstepping idea for PDEs appeared well before the development of finite-
dimensional backstepping in the late 1980s.

Volterra operator transformations used for solving PDEs in

D. COLTON, The solution of initial-boundary value problems for parabolic equa-
tions by the method of integral operators, Journal of Differential Equations, 26
(1977), pp. 181–190.

and for developing controllability results in

T. I. SEIDMAN, Two results on exact boundary control of parabolic equations,
Applied Mathematics and Optimization, 11 (1984), pp. 145–152.

141 of 275



Homework

1. For the plant

ut = uxx+λu
ux(0) = 0

design the Neumann stabilizing controller (ux(1) actuated).

Hint: use the target system

wt = wxx
wx(0) = 0

wx(1) = −
1
2
w(1) . (239)

This system is asymptotically stable. Note also that you do not need to find k(x,y),
it has already been found in Example 3. You only need to use the condition (239) to
derive the controller.

2. Find the PDE for the kernel l(x,y) of the inverse transformation

u(x) = w(x)+
Z x

0
l(x,y)w(y)dy ,

142 of 275



which relates the systems u and w from Exercise 1. By comparison with the PDE for
k(x,y), show that

l(x,y) = −λx
J1

(√

λ(x2− y2)

)

√

λ(x2− y2)
.

3. Design the Dirichlet boundary controller for the heat equation

ut = uxx
ux(0) = −qu(0)

Follow these steps:

1) Use the transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy (240)

to map the plant into the target system

wt = wxx (241)
wx(0) = 0 (242)
w(1) = 0 . (243)

143 of 275



Show that k(x,y) satisfies the following PDE:

kxx(x,y) = kyy(x,y) (244)
ky(x,0) = −qk(x,0) (245)
k(x,x) = −q . (246)

2) The general solution of the PDE (244) has the form k(x,y) = φ(x− y)+ψ(x+ y),
where φ and ψ are arbitrary functions. Using (246) it can be shown that ψ ≡ 0. Find
φ from the conditions (245) and (246). Write the solution for k(x,y).

3) Write down the controller.

4. Show that the solution of the closed-loop system from Exercise 3 is (σn = π(2n+

1)/2)

u(x, t) = 2
∞

∑
n=0

e−σ
2
nt (σn cos(σnx)−qsin(σnx))

×
Z 1

0

σn cos(σnξ)−qsin(σnξ)+(−1)nqeq(1−ξ)

σ2n+q2 u0(ξ)dξ .

144 of 275



To do this, first write the solution of the system (241)–(243). Then use the transforma-
tion (240) with the k(x,y) that you found in Exercise 3 to express the initial condition
w0(x) in terms of u0(x) (you will need to change the order of integration in one of the
terms to do this). Finally, write the solution for u(x, t) using the inverse transformation

u(x) = w(x)−q
Z x

0
w(y)dy

(i.e., l(x,y) = −q in this problem; feel free to prove it).

Note that it is not possible to write a closed form solution for the open loop plant, but
it is possible to do so for the closed loop system!

5. For the plant

ut = uxx+bux+λu

ux(0) = −
b
2
u(0)

design the Neumann stabilizing controller (ux(1) actuated).

Hint: by transforming the plant to a system without b-term, reduce the problem to
Exercise 1.

145 of 275



6. For the plant

ut = uxx+3e2xu(0) (247)
ux(0) = 0 (248)

design the Dirichlet stabilizing controller.

146 of 275



Observer Design

147 of 275



Sensors placed at the boundaries.

Motivation: fluid flows (aerodynamics, acoustics, chemical process control, etc.).

148 of 275



Observer Design for PDEs with Boundary Sensing

ut = uxx+λu (249)
ux(0) = 0 (250)
u(1) = U(t) (open-loop or feedback signal) (251)

meas. output = u(0) (at the boundary w/ Neumann b.c.) (252)

Observer:

ût = ûxx+λû+ p1(x)[u(0)− û(0))] (253)
ûx(0) = p10[u(0)− û(0)] (254)
û(1) = U(t) (255)

The function p1(x) and the constant p10 are observer gains to be determined.

149 of 275



Mimics the finite-dimensional observer format of “copy of the plant plus output injection.”

Finite-dim plant

ẋ = Ax+Bu (256)
y = Cx (257)

Observer

˙̂x= Ax̂+Bu+L(y−Cx̂) (258)

L = observer gain
L(y−Cx̂) = “output error injection”

In (253), (254) the obs. gains p1(x) and p10 form an inf-dim “vector” like L.

150 of 275



Objective: find p1(x) and p10 such that û converges to u.

Error variable

ũ= u− û (259)

Error system

ũt = ũxx+λũ− p1(x)ũ(0) (260)
ũx(0) = −p10ũ(0) (261)
ũ(1) = 0 (262)

Magic needed: remove the destabilizing term λũ(x) using feedback of boundary term ũ(0)

151 of 275



Backstepping transformation

ũ(x) = w̃(x)−
Z x

0
p(x,y)w̃(y)dy (263)

Target system

w̃t = w̃xx (264)
w̃x(0) = 0 (265)
w̃(1) = 0 (266)

152 of 275



Differentiating the transformation (303), we get

ũt(x) = w̃t(x)−
Z x

0
p(x,y)w̃yy(y)dy

= w̃t(x)− p(x,x)w̃x(x)+ p(x,0)w̃x(0)+ py(x,x)w̃(x)

− py(x,0)w̃(0)−
Z x

0
pyy(x,y)w̃(y)dy , (267)

ũxx(x) = w̃xx(x)− w̃(x)
d
dx
p(x,x)− p(x,x)w̃x(x)

− px(x,x)w̃(x)−
Z x

0
pxx(x,y)w̃(y)dy . (268)

153 of 275



Subtracting (268) from (267), we obtain:

ũt− ũxx = 2w̃(x)
d
dx
p(x,x)− py(x,0)w̃(0)+

Z x

0
(pxx(x,y)− pyy(x,y))w̃(y)dy

= λ

(

w̃(x)−
Z x

0
p(x,y)w̃(y)dy

)

︸ ︷︷ ︸

ũ

−p1(x) w̃(0)
︸︷︷︸

ũ(0)

(269)

For the last equality to hold, three conditions must be satisfied:

pxx(x,y)− pyy(x,y) = −λp(x,y) (270)
d
dx
p(x,x) =

λ
2

(271)

p1(x) = py(x,0) (272)

154 of 275



Recall the backstepping transform

ũ(x) = w̃(x)−
Z x

0
p(x,y)w̃(y)dy (273)

ũx(x) = w̃x(x)− p(x,x)w̃(x)−
Z x

0
px(x,y)w̃(y)dy (274)

and set x= 1 and x= 0:

ũ(0) = w̃(0) (275)

ũ(1) = w̃(1)−
Z 1

0
p(1,y)w̃(y)dy (276)

ũx(0) = w̃x(0)− p(0,0)w̃(0) (277)

Recall that the target system requires that

w̃x(0) = 0 (278)
w̃(1) = 0 (279)

155 of 275



It follows that

ũ(1) = −
Z 1

0
p(1,y)w̃(y)dy (280)

ũx(0) = −p(0,0)ũ(0) (281)

Recall now the boundary conditions (261), (262)

ũx(0) = −p10ũ(0) (282)
ũ(1) = 0 (283)

This provides the conditions:

p10 = p(0,0) (284)
p(1,y) = 0 (285)

156 of 275



Let us solve (271) and (285) for p(x,x) and combine the result with the equations (270)
and (285):

pxx(x,y)− pyy(x,y) = −λp(x,y)
p(1,y) = 0

p(x,x) =
λ
2
(x−1)

(286)

To solve, make a change of variables

 x= 1− y,  y= 1− x,  p(  x,  y) = p(x,y) (287)

which gives the following PDE:

 p  x  x(  x,  y)−  p  y  y(  x,  y) = λp(  x,  y) (288)
 p(  x,0) = 0, (289)

 p(  x,  x) = −
λ
2
x . (290)

157 of 275



The solution is

 p(  x,  y) = −λ  y
I1(
√

λ(  x2−  y2))
√

λ(  x2−  y2)
. (291)

or, in the original variables,

p(x,y) = −λ(1− x)
I1(
√

λ(2− x− y)(x− y))
√

λ(2− x− y)(x− y)
. (292)

The observer gains,obtained using (272) and (284) are

p1(x) = py(x,0) =
λ(1− x)
x(2− x)

I2
(√

λx(2− x)
)

(293)

p10 = p(0,0) = −
λ
2
. (294)

158 of 275



Summary of the plant and observer

Plant ut = uxx+λu (295)
ux(0) = 0 (296)
u(1) =U (297)

Observer ût = ûxx+λû +
λ(1− x)
x(2− x)

I2
(√

λx(2− x)
)

[u(0)− û(0)] (298)

ûx(0) = −
λ
2

[u(0)− û(0)] (299)

û(1) =U (300)

159 of 275



Output Feedback

The observer can be used with any controller.

For linear systems, the separation principle (or “certainty equivalence”) holds, i.e. the
combination of a separately designed state feedback controller and observer results in a
stabilizing output-feedback controller.

Next, we establish the separation principle for our observer-based output feedback design.

160 of 275



The control backstepping transformation û /→ ŵ (on the state estimate)

ŵ(x) = û(x)−
Z x

0
k(x,y)û(y)dy (direct) (301)

û(x) = ŵ(x)+
Z x

0
l(x,y)ŵ(y)dy (inverse) (302)

and the observer backstepping transformation ũ /→ w̃

ũ(x) = w̃(x)−
Z x

0
p(x,y)w̃(y)dy (inverse) (303)

map the closed-loop sys into a target system of cascade form w̃→ ŵ

ŵt = ŵxx+
{

p1(x)−
Z x

0
k(x,y)p1(y)dy+ p10k(x,0)

}

w̃(0) (304)

ŵx(0) = p10w̃(0) (305)
ŵ(1) = 0 (306)

w̃t = w̃xx (307)
w̃x(0) = 0 AUTONOMOUS SYST. (308)
w̃(1) = 0, (309)

where k(x,y) is the kernel of the control transformation and p1(x), p10 are observer gains.
161 of 275



The w̃-system and the homogeneous part of the ŵ-system (without w̃(0, t)) are exponen-
tially stable heat equations.

To show that the system (ŵ, w̃) is exponentially stable, we use the weighted Lyapunov
function

V =
A
2

Z 1

0
w̃(x)2dx+

1
2

Z 1

0
ŵ(x)2dx , (310)

where A is the weighting constant to be chosen later.

Taking the time derivative of (310), we get

V̇ = −A
Z 1

0
w̃x(x)2dx−

Z 1

0
ŵx(x)2dx GOOD

−p10ŵ(0)w̃(0) BAD

+ w̃(0)
Z 1

0
ŵ(x)

{

p1(x)−
Z x

0
k(x,y)p1(y)dy+ p10k(x,0)

}

dx BAD

162 of 275



Using the Young and Agmon inequalities, we estimate

−p10ŵ(0)w̃(0) ≤
1
4
ŵ(0)2 + p2

10w̃(0)2 ≤
1
4

Z 1

0
ŵx(x)2dx+ p2

10

Z 1

0
w̃x(x)2dx

and

w̃(0)
Z 1

0
ŵ(x)

{

p1(x)−
Z x

0
k(x,y)p1(y)dy+ p10k(x,0)

}

dx

≤
1
4

Z 1

0
ŵx(x)2dx+B2

Z 1

0
w̃x(x)2dx

where B= maxx∈[0,1]{p1(x)−
R x

0 k(x,y)p1(y)dy+ p10k(x,0)}.

With these estimates, we obtain

V̇ ≤ −(A−B2− p2
10)

Z 1

0
w̃x(x)2dx−

1
2

Z 1

0
ŵx(x)2dx

≤ −
1
4
(A−B2− p2

10)
Z 1

0
w̃(x)2dx−

1
8

Z 1

0
ŵ(x)2dx (Poincare)

Taking A= 2(B2 + p2
10), we get

V̇ ≤ −
1
4
V

163 of 275



Hence, the system (ŵ, w̃) is exponentially stable.

The system (û, ũ) is also exponentially stable since it is related to (ŵ, w̃) by the invertible
coordinate transformations (303) and (302).

We have proved the separation principle.

164 of 275



Output feedback design for anti-collocated setup

Plant ut = uxx+λu (311)
ux(0) = 0 (312)

Observer ût = ûxx+λû+
λ(1− x)
x(2− x)

I2
(√

λx(2− x)
)

[u(0)− û(0)] (313)

ûx(0) = −
λ
2
[u(0)− û(0)] (314)

û(1) = −
Z 1

0
λ
I1(
√

λ(1− y2))
√

λ(1− y2)
û(y)dy (315)

Controller u(1) = −
Z 1

0
λ
I1(
√

λ(1− y2))
√

λ(1− y2)
û(y)dy (316)

165 of 275



Observer Design for Collocated Sensor and Actuator

ut = uxx+λu (317)
ux(0) = 0 (318)
u(1) = U(t) (319)
ux(1) − measurement

Observer

ût = ûxx+λû+ p1(x)[ux(1)− ûx(1)] (320)
ûx(0) = 0 (321)
û(1) = U(t)+ p10[ux(1)− ûx(1)] (322)

Error ũ= u− û, error system

ũt = ũxx+λũ− p1(x)ũx(1) (323)
ũx(0) = 0 (324)
ũ(1) = −p10ũx(1) (325)

166 of 275



Backstepping transformation

ũ(x) = w̃(x)−
Z 1

x
p(x,y)w̃(y)dy (326)

to convert the error system into target system:

w̃t = w̃xx (327)
w̃x(0) = 0 (328)
w̃(1) = 0. (329)

Note that the integral in the transformation runs from x to 1 instead of the usual 0 to x!

167 of 275



We get the kernel PDE

pxx(x,y)− pyy(x,y) = −λp(x,y) (330)
px(0,y) = 0, (331)

p(x,x) = −
λ
2
x (332)

From the resulting target system

w̃t = w̃xx+[p(x,1)− p1(x)]w̃x(1) (333)
w̃x(0) = 0 (334)
w̃(1) = −p10wx(1) (335)

the observer gains should be chosen as

p1(x) = p(x,1), p10 = 0. (336)

168 of 275



To solve the kernel PDE (330)–(332) we introduce the change of variables

 x= y,  y= x,  p(  x,  y) = p(x,y)

to get

 p  x  x(  x,  y)−  p  y  y(  x,  y) = λ  p(  x,  y) (337)
 p  y(  x,0) = 0, (338)

 p(  x,  x) = −
λ
2

 x . (339)

This PDE’s solution is

p(  x,  y) = −λ  x
I1(
√

λ(  x2−  y2))
√

λ(  x2−  y2)

= −λy
I1(
√

λ(y2− x2))
√

λ(y2− x2)

169 of 275



Therefore, the observer gains are

p1(x) = −λ
I1(
√

λ(1− x2))
√

λ(1− x2)
(340)

and p10 = 0.

170 of 275



Output feedback design for collocated setup

Plant ut = uxx+λu (341)
ux(0) = 0 (342)

Observer ût = ûxx+λû−λ
I1(
√

λ(1− x2))
√

λ(1− x2)
[ux(1)− ûx(1)] (343)

ûx(0) = 0 (344)

û(1) = −
Z 1

0
λ
I1(
√

λ(1− y2))
√

λ(1− y2)
û(y)dy (345)

Controller u(1) = −
Z 1

0
λ
I1(
√

λ(1− y2))
√

λ(1− y2)
û(y)dy (346)

171 of 275



The fact that p1(x) = k(1,x) demonstrates the duality between observer and control de-
signs, the property known from the finite-dimensional designs for linear systems.

We used the same decay rates for the observer and controller. One can easily modify the
designs to make the observer faster that the controller.

172 of 275



Compensator Transfer Function

When both the controller and the observer are given explicitly, one can derive a frequency
domain representation of the compensator.

To illustrate this, consider the following PDE:

ut = uxx+gu(0) (347)
ux(0) = 0 (348)

with

u(1) = input
u(0) = output

We first derive the transfer function of the open-loop plant.

173 of 275



Taking the Laplace transform of (347), (348) we get

su(x,s) = u′′(x,s)+gu(0,s) (349)
u′(0,s) = 0 (350)

The general solution for this second order ODE in x is given by

u(x,s) = Asinh(
√
sx)+Bcosh(

√
sx)+

g
s
u(0,s) , (351)

where A and B are to be determined. From the boundary condition (350) we have

u′(0,s) = A
√
s= 0 ⇒ A= 0 . (352)

By setting x= 0 in (351), we find B:

B= u(0,s)
(

1−
g
s

)

. (353)

Hence, we get

u(x,s) = u(0,s)
[g
s
+
(

1−
g
s

)

cosh(
√
sx)
]

.

Setting x= 1 we obtain the plant transfer function

u(0,s) =
s

g+(s−g)cosh(
√
s)
u(1,s) (354)

174 of 275



This plant has no zeros and infinite relative degree.

Using a Taylor expansion of the cosh term, we get an approximate expression for the plant
transfer function,

u(0,s)
u(1,s)

≈
1

1− g
2 +
(

1
2 −

g
4!

)

s+
(

1
4! −

g
6!

)

s2 + . . .
. (355)

175 of 275



Let us now derive the frequency domain representation of the compensator.

The observer PDE is given by

ût = ûxx+gu(0) (356)
ûx(0) = 0 (357)

û(1) = −
Z 1

0

√
gsinh(

√
g(1− y))û(y)dy . (358)

Applying the Laplace transform, we get

sû(x,s) = û′′(x,s)+gu(0,s) (359)
û′(0,s) = 0 (360)

û(1,s) = −
Z 1

0

√
gsinh(

√
g(1− y))û(y,s)dy (361)

176 of 275



The general solution of PDE (359) with boundary condition (360) is given by

û(x,s) = û(0,s)cosh(
√
sx)+

g
s
(

1− cosh(
√
sx)
)

u(0,s). (362)

Substituting (362) into (361), and evaluating the integral, we express û(0,s) as a function
of u(0,s):

û(0,s) =
cosh(

√
s)− cosh(

√g)
scosh(

√
s)−gcosh(

√g)
gu(0,s) . (363)

Setting x= 1 in (362) and using (363) we get the transfer function of the compensator

u(1,s) =
g
s

(

−1+
(s−g)cosh(

√
s)cosh(

√g)
scosh(

√
s)−gcosh(

√g)

)

u(0,s) (364)

177 of 275



10−1 100 101 102 103
−30

−20

−10

0

10

20

M
ag

ni
tu

de
  (

dB
) 

ω , rad/sec 
10−1 100 101 102 103

−90

−75

−60

−45

−30

−15

0

Ph
as

e 
(d

eg
)

ω , rad/sec 

Bode plots of the compensator (364)

Compensator can be approximated by a second order, relative degree one transfer func-
tion, for example,

C(s) ≈ 60
s+17

s2 +25s+320
. (365)

178 of 275



Homework

1. Design an observer for the following system:

ut = uxx
ux(0) = −qu(0)

u(1) = U(t)
with only ux(1) available for measurement.

Follow these steps:

1) Write down the observer for this system, with output injection entering the PDE and
the boundary condition at x= 1.

2) Use the transformation

ũ(x) = w̃(x)−
Z 1

x
p(x,y)w̃(y)dy (366)

to map the error system into the target system

w̃t = w̃xx (367)
w̃x(0) = 0 (368)
w̃(1) = 0 . (369)

179 of 275



Show that p(x,y) satisfies the PDE

pxx(x,y) = pyy(x,y) (370)
px(0,y) = −qp(0,y) (371)
p(x,x) = −q . (372)

and that the observer gains are given by p10 = 0 and p1(x) = p(x,1).

3) Solve the PDE for p(x,y) (look for the solution in the form p(x,y) = φ(y− x)). Find
p1(x).

2. Find the frequency domain representation of the plant

ut = uxx
ux(0) = −qu(0)

u(1) = U(t)

with u(0) measured and u(1) actuated, i.e., find G(s) such that u(0,s) = G(s)U(s).

180 of 275



First Order Hyperbolic PDEs
and Delay Equations

181 of 275



First Order Hyperbolic PDEs

ut = ux+ g(x)u(0)+
Z x

0
f (x,y)u(y)dy (373)

u(1) = control (374)

Unlike in second order PDEs, here we specify only one boundary condition.

Backstepping transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy (375)

182 of 275



Target system

wt = wx (376)
w(1) = 0 (377)

Ddelay line with delay = 1, output w(0, t) = w(1, t−1), and zero input at w(1, t).

Akin to traffic flow over a stretch of a road with no new cars permitted to enter after t = 0.

Explicit solution

w(x, t) =

{

w0(t+ x) 0 ≤ t+ x< 1
0 t+ x≥ 1,

(378)

where w0(x) is the initial condition.

Solution becomes zero in time = 1.

183 of 275



Kernel PDE from (373)–(377):

kx(x,y)+ ky(x,y) =
Z x

y
k(x,ξ) f (ξ,y)dξ− f (x,y) (379)

k(x,0) =
Z x

0
k(x,y)g(y)dy−g(x) (380)

First-order hyperbolic. Only one boundary condition.

Controller (as before)

u(1) =
Z 1

0
k(1,y)u(y)dy (381)

184 of 275



Example 5

ut = ux+gebxu(0) (382)
Kernel PDE (379) becomes

kx+ ky = 0 , (383)

which has a general solution

k(x,y) = φ(x− y)

If we plug this solution into (380), we get the integral equation

φ(x) =
Z x

0
gebyφ(x− y)dy−gebx . (384)

Solution obtained by Laplace transform in x:

φ(s) = −
g

s− (b+g)
. (385)

After taking the inverse Laplace transform, φ(x) = −ge(b+g)x, and hence

k(x,y) = −ge(b+g)(x−y)

185 of 275



Example 6 [TRICKIER–can skip]

ut = ux+
Z x

0
f eb(x−y)u(y)dy (386)

Kernel PDE

kx+ ky =
Z x

y
k(x,ξ) f eb(ξ−y)dξ− f eb(x−y) (387)

k(x,0) = 0 . (388)

After we differentiate (387) with respect to y, the integral term is eliminated:

kxy+ kyy = − f k−bkx−bky . (389)

Since we now increased the order of the equation, we need an extra boundary condition,
which we get by setting y= x in (387):

d
dx
k(x,x) = kx(x,x)+ ky(x,x) = − f =⇒ k(x,x) = − f x . (390)

186 of 275



Introducing the change of variables

k(x,y) = p(z,y)eb(z−y)/2, z= 2x− y , (391)

we get the following PDE for p(z,y):

pzz(z,y)− pyy(z,y) = f p(z,y) (392)
p(z,0) = 0 (393)
p(z,z) = − f z . (394)

Solution:

p(z,y) = −2 f y
I1
(√

f (z2− y2)

)

√

f (z2− y2)
(395)

or, in the original variables,

k(x,y) = − f eb(x−y)y
I1
(

2
√

f x(x− y)
)

√

f x(x− y)
. (396)

187 of 275



ODE Systems with Actuator Delay

Ẋ = AX+BU(t−D) , (397)

(A,B) = stabilizable pair
D= delay on input signalU(t)

First-order hyperbolic PDE as a model for the delay

ut = ux (398)
u(D, t) = U(t) (399)

The solution is u(x, t) =U(t+ x−D) and therefore u(0, t) =U(t−D).

The system (397) can be now written as the ODE

Ẋ = AX+Bu(0, t) (400)

along with the PDE (398), (399).

188 of 275



e−sD # Ẋ = AX + BU(t − D) #
X(t)U(t − D)U(t)

#
u(D, t) u(0, t)

$x

1 0

# direction of convection

Ẋ = AX+Bu(0, t)
ut = ux

u(D, t) = U(t)

189 of 275



Suppose a stabilizing static state-feedback controller

U = KX

has been designed for the system without delay (D= 0), i.e.,

(A+BK) = Hurwitz matrix

When D .= 0, we choose the target system as

Ẋ = (A+BK)X+Bw(0) (401)
wt = wx (402)

w(D) = 0 . (403)

w becomes zero D time units, and after that the ODE (401) decays exponentially by the
nominal design.

190 of 275



To map (398)-(400) into (401)–(403), consider the backstepping transformation

w(x) = u(x)−
Z x

0
q(x,y)u(y)dy− γ(x)TX , (404)

where q(x,y) and γ(x) are to be designed.

wx = ux−q(x,x)u(x)−
Z x

0
qx(x,y)u(y)dy− γ′(x)TX (405)

wt = ut−
Z x

0
q(x,y)ut(y)dy− γ(x)T [AX+Bu(0)]

= ux−q(x,x)u(x)+q(x,0)u(0)+
Z x

0
qy(x,y)u(y)dy

−γ(x)T [AX +Bu(0)] . (406)

Subtracting (405) from (406) we get
Z x

0
(qx(x,y)+qy(x,y))u(y)dy+

[

q(x,0)− γ(x)TB
]

u(0)

+
[

γ′(x)T − γ(x)TA
]

X = 0 . (407)

191 of 275



We get three conditions

qx(x,y)+qy(x,y) = 0 [PDE] (408)
q(x,0) = γ(x)TB [boundary condition] (409)
γ′(x) = AT γ(x) [ODE] (410)

To find the initial condition for the ODE, let us set x= 0 in (404), which gives

w(0) = u(0)− γ(0)TX

Substituting this expression into (401), we get

Ẋ = AX+Bu(0)+B
(

K− γ(0)T
)

X . (411)

Comparing this equation with (400), we have

γ(0) = KT

Therefore the solution to the ODE (410) is γ(x) = eATxKT which gives

γ(x)T = KeAx (412)

192 of 275



A general solution to (408) is q(x,y) = φ(x− y), where φ is determined from (409).

We get the PDE solution as

q(x,y) = KeA(x−y)B (413)

Substitute the gains γ(x) and q(x,y) into the transformation (404) and set x=D to get the
control law:

u(D) = K
Z D

0
eA(D−y)Bu(y)dy+KeADX (414)

The above controller is given in terms of the transport delay state u(y).

193 of 275



Using (398)–(399), derive the representation in terms of the input signalU(t):

U(t) = K
[

eADX +
Z t

t−D
eA(t−θ)BU(θ)dθ

]

(415)

Notice that

• This is an infinite dimensional controller (input depends on its history over [t−D, t]).

• U(t) = KX(t+D) [predictor-based feedback]

• Controller works harder thanU(t) = KX(t) when A is unstable.

194 of 275



Notes and References

Controller (415) draws inspiration from the Smith Predictor (1957). However, SP is not
applicable to unstable plants

Controller (415) first proposed by Mayne (1968).

Most people think that it was introduced by Manitius and Olbrot (1978) as Finite Spectrum
Assignment.

Generalized by Artstein (1982) to time-varying plants and distributed delays.

Lyapunov stability first proved by Krstic and Smyshlyaev (2008).

195 of 275



Homework

1. Derive the kernel PDE (379)–(380).

Hint: use the formula
Z x

0

Z ξ

0
k(x,ξ) f (ξ,y)u(y)dydξ =

Z x

0

Z x

y
k(x,ξ) f (ξ,y)u(y)dξdy

2. Consider the system

Ẋ = AX
Y (t) = CX(t−D) ,

where the output equation can be also represented as

ut = ux
u(D, t) = CX(t)
Y (t) = u(0, t) .

196 of 275



Introduce the observer

˙̂X = AX̂+ eADL(Y (t)− û(0, t))
ût = ûx+CeAxL(Y (t)− û(0, t))

û(D, t) = CX̂(t)

where L is chosen such that A−LC is Hurwitz. Show that the transformation

w̃(x) = ũ(x)−CeA(x−D)X̃ ,

where X̃ = X − X̂ , ũ= u− û, converts the (X̃ , ũ) system into

˙̃X =
(

A− eADLCe−AD
)

X̃ − eADLw̃(0)

w̃t = w̃x
w̃(D) = 0

Note that the w̃ system is exponentially stable and that the matrix A− eADLCe−AD is
Hurwitz (you can see this by using a similarity transformation eAD, and using the fact
that it commutes with A).

197 of 275



3. Show that the observer in Exercise 2 can be represented as

˙̂X = AX̂+ eADL(Y − Ŷ )

Ŷ (t) = CX̂(t−D)+C
Z t

t−D
eA(t−θ)L(Y (θ)− Ŷ (θ))dθ

Hint: take a Laplace transform of the û(x, t) system with respect to t; solve the re-
sulting first order ODE w.r.t x with û(0,s) = Ŷ (s) as initial condition and Y (s)− Ŷ(s)
as input; evaluate the solution at x = D and substitute û(D,s) =CX̂(s); take inverse
Laplace transform; obtain the delayed versions of X̂(t) and Y (t)−Ŷ (t); shift the inte-
gration variable to obtain

R t
t−D.

198 of 275



Second-Order Hyperbolic PDEs:
Wave Equations

199 of 275



Heat equation

ut = uxx (416)

Wave equation

utt = uxx (417)

Difference roughly analogous to that between

ż+ z= 0

and

z̈+ z= 0

Heat equation-type systems have mostly real eigenvalues.

Wave equation-type systems have mostly imaginary eigenvalues.

200 of 275



Classical Boundary Damping/Passive Absorber Control

Vibrating string on a finite interval:

utt = uxx (418)
ux(0) = 0 [free, i.e., force = 0] (419)
u(1) = 0 [pinned] (420)

Lyapunov function

E =
1
2
‖ux‖2
︸ ︷︷ ︸

potential e.

+
1
2
‖ut‖2
︸ ︷︷ ︸

kinetic e.

(421)

201 of 275



Ė =
Z 1

0
uxuxtdx+

Z 1

0
ututtdx (chain rule)

=
Z 1

0
uxuxtdx+

Z 1

0
utuxxdx (from PDE utt = uxx)

=
Z 1

0
uxuxtdx+

Z 1

0
utdux

=
Z 1

0
uxuxtdx+(ut(x)ux(x))|10−

Z 1

0
utxuxdx (integration by parts)

=
!

!
!

!
!

!
!

!
!!Z 1

0
uxuxtdx+(ut(x)ux(x))|10−

!
!

!
!

!
!

!
!

!!Z 1

0
utxuxdx

= (ut(x)ux(x))|10
= ut(1)ux(1)−ut(0)ux(0)

= ux(1)
d
dt
u(1)
︸︷︷︸

=0

− ut(0)ux(0)
︸ ︷︷ ︸

=0

(from PDE’s boundary conditions)

= 0

Thus, E(t) = E(0). Energy is conserved. As expected for an undamped string.

System is marginally stable.
202 of 275



Classical method of exponentially stabilizing this system is by damping on the boundary,

ux(0) = c0ut(0) c0 > 0 (422)

Force proportional to velocity of free end. Passive damper (absorber).

203 of 275



The locus of eigenvalues of the system (418), (422), (420) when c0 grows from 0 to 1,
and then beyond 1.

Amazing: Damping has effect on the whole domain, though it acts only on the boundary.
204 of 275



How to find the eigenvalues

First, the solution to (418) is sought in the form

u(x, t) = eσtφ(x).

Substituting this expression into (418) gives

σ2eσtφ(x) = eσtφ′′(x),

and using the boundary conditions we get

eσtφ(1) = 0
eσtφ′(0) = c0σeσtφ(0).

We have now arrived at the Sturm-Louiville problem

φ′′ −σ2φ = 0 (423)
φ′(0) = c0σφ(0) (424)
φ(1) = 0. (425)

205 of 275



The solution of (423) is given by

φ(x) = eσx+Be−σx (426)

From (425) we have B= −e−2σ, so

φ(x) = eσx− e−σ(x+2) (427)

From (424)

φ′(0)− c0σφ(0) = 0 (428)

σ(1+ e2σ)− c0σ(1− e2σ) = 0 (429)

e2σ = −
1− c0
1+ c0

(430)

Solving for σ gives

σ= −
1
2

ln
∣
∣
∣
∣

1+ c0
1− c0

∣
∣
∣
∣
+ jπ

{

n+ 1
2 0 ≤ c0 < 1

n c0 > 1 (431)

For c0 = 1 the spectrum is at negative infinity and the solution converges to zero in 1 sec.
206 of 275



Caveat:
boundary control (422) on the free end x= 0 effective if the string is pinned at x= 1.

207 of 275



Backstepping Design:
A String With One Free End and Actuation on the Other End

Consider the wave equation with one free end and force control on the other end:

utt = uxx (432)
ux(0) = 0 [free end, i.e., force = 0] (433)
ux(1) = control force (434)

208 of 275



Consider a damping boundary control at the controlled end

utt = uxx (435)
ux(0) = 0 (436)
ux(1) = −c1ut(1), c1 > 0 (437)

This system has an arbitrary constant as an equilibrium profile.

A more sophisticated controller at x = 1 is needed if the boundary condition at x = 0 is to
remain free.

209 of 275



We propose the following (backstepping) transformation

w(x) = u(x)+ c0

Z x

0
u(y)dy (438)

which maps the plant into the target system

wtt = wxx (439)
wx(0) = c0w(0) (440)
wx(1) = −c1wt(1) . (441)

The idea is that a large c0 in the boundary condition at x = 0 can make wx(0) = c0w(0)

behave like w(0) ≈ 0.

(Large c0 is not necessary, it is a design option, hence, one should not view this as employing high gain

feedback.)

210 of 275



First we analyze the stability of the target system. Consider the Lyapunov function

V =
1
2

(

‖wx‖2 +‖wt‖2
︸ ︷︷ ︸

+c0w2(0)
)

+δ
Z 1

0
(1+ x)wx(x)wt(x)dx (442)

The crucial novelty is the introduction of “indefinite” spatially weighted cross term between
wx and wt .

Using the Cauchy-Schwartz and Young’s inequalities, one can show that for sufficiently
small δ there exist m1, m2 > 0 such that

m1U #V # m2U , U = ‖wx‖2 +‖wt‖2 +w2(0) . (443)

Therefore V is positive definite.

211 of 275



The derivative of V along the solution of the target system is

V̇ =
Z 1

0
wxwtxdx+

Z 1

0
wtwttdx+ c0w(0)wt(0)

+δ
Z 1

0
(1+ x)(wxtwt +wxwtt)dx

=
Z 1

0
wxwtxdx

+
Z 1

0
wtwxxdx+wx(0)wt(0)+δ

Z 1

0
(1+ x)(wxtwt +wxwxx)dx

=
Z 1

0
wxwtxdx+wtwx|10−

Z 1

0
wtwxtdx+wx(0)wt(0)

+δ
Z 1

0
(1+ x)(wxtwt +wxwxx)dx

= δ

(
Z 1

0
wxtwtdx+

Z 1

0
wxwxxdx+

Z 1

0
xwxtwtdx︸ ︷︷ ︸

+
Z 1

0
xwxwxxdx︸ ︷︷ ︸

)

+wt(1)wx(1) .

212 of 275



In the last two integrals we notice that

wxtwtdx=
d
dx
w2
t

2
, wxwxxdx=

d
dx
w2
x

2
(444)

and use integration by parts:

V̇ = wt(1)wx(1)+
δ
2

[

(1+ x)(w2
x +w2

t )
]

|10−
δ
2

[

(‖wx‖2 +‖wt‖2
]

= −c1w2
t +δ(w2

t (1)+w2
x(1))−

δ
2

[

w2
x(0)+w2

t (0)
]

−
δ
2

[

‖wx‖2 +‖wt‖2
]

= −
(

c1−δ(1+ c2
1)
)

w2
t (1)−

δ
2

(

w2
t (0)+ c2

0w
2(0)

)

−
δ
2

[

‖wx‖2 +‖wt‖2
]

which is negative definite for

δ<
c1

1+ c2
1

(δ is just an analysis parameter)

It now follows from (442) and (443) that

U(t) ≤Me−t/MU(0)

for some possibly largeM, which proves exponential stability of the target system.

213 of 275



So, the target system is stable, but what is the control law?

Recall the boundary condition at x= 1,

wx(1) = −c1wt(1),

and the backstepping transformation,

w(x) = u(x)+ c0

Z x

0
u(y)dy. (445)

The resulting Neumann backstepping controller is obtained by differentiating the transfor-
mation (445) and setting x= 1:

ux(1) = −c1ut(1)− c0u(1)− c1c0

Z 1

0
ut(y)dy (446)

For the best performance (with respect to the case with “pinned” uncontrolled boundary
condition in Section ), one should choose c0 large and c1 around 1.

214 of 275



The corresponding output feedback controller with only boundary sensing is

ux(1) = −c0û(1)− c1ût(1)+ c0c1

Z 1

0
ût(y)dy. (447)

where the observer state is governed by

ûtt = ûxx (448)
ûx(0) = c̃0(ût(0)−ut(0)) (449)
û(1) = u(1) (450)

with c̃0 > 0.

(Why this observer?)

215 of 275



Wave Equation With Kelvin-Voigt Damping

Internal material damping, present in all realistic materials.

utt = uxx+ duxxt d > 0, small (451)
ux(0) = 0 (452)
u(1) = control (453)

Open-loop eigenvalues.
216 of 275



Backstepping transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

Target system

wtt = (1+d∂t)(wxx− cw ) (454)
wx(0) = 0 (455)
w(1) = 0 (456)

217 of 275



The n-th pair of eigenvalues σn of this system satisfies the quadratic equation

σ2
n+d

[

c+
(π

2
+πn

)2
]

σn+

[

c+
(π

2
+πn

)2
]

= 0, (457)

where n= 0,1,2, . . ..

There are two sets of eigenvalues:

• for lower n the eigenvalues reside on the circle
(

Re(σn)+
1
d

)2
+(Im(σn))2 =

1
d2 (458)

• for higher n the eigenvalues are real, with one branch accumulating towards−1/d as
n→ ∞ and the other branch converging to −∞

218 of 275



Increasing c moves the eigenvalues along the circle in the negative real direction and
decreases the number of them on the circle.

With a very high value of c, all of the eigenvalues can be made real.

(While possible, this would not necessarily be a good idea, neither for transient response,
nor for disturbance attenuation, and certainly not from the point of view of control effort.)

219 of 275



The kernel PDE can be shown to be

kxx = kyy+ ck (459)
ky(x,0) = 0 (460)

k(x,x) =
c
2
x, (461)

Note that this is the same PDE as for the reaction-diffusion equation with a Neumann
boundary condition on the uncontrolled end.

The controller is given by

u(1) = −
Z 1

0
c
I1
(√

c(1− y2)

)

√

c(1− y2)
u(y)dy . (462)

This controller does not depend on d.

220 of 275



Notes

In the 1980s it was shown that feedback laws for the undamped wave equation have no
robustness margin to time delay (induced by measurement, computation, and actuation).

221 of 275



Homework

1. Show that the transformation

w(x) = u(x)+ c0

Z x

0
u(y)dy

and the boundary control

ux(1) = −c0u(1)− c1

(

ut(1)+ c0

Z 1

0
ut(y)dy

)

convert the plant

utt = uxx
ux(0) = 0

into the asymptotically stable system

wtt = wxx
wx(0) = c0w(0)

wx(1) = −c1wt(1) .

222 of 275



2. In Exercise 1 determine c0 and c1 such that the first pair of poles is around −1.15±
j1.5. In order to do this, use the GUI available on the class website.

3. Consider the wave equation

utt = uxx
ux(0) = −qu(0) ,

which is unstable with u(1) = 0 when q≥ 1. Show that the change of variable

w(x) = u(x)+(c0 +q)
Z x

0
eq(x−y)u(y)dy

and the boundary feedback

ux(1) = −c1ut(1)− (c0 +q)u(1)− (c0 +q)
Z 1

0
eq(1−y)[c1ut(y)+qu(y)]dy

convert the closed-loop system into

wtt = wxx
wx(0) = c0w(0)

wx(1) = −c1wt(1) .

223 of 275



Nota bene: In figure below it is illustrated that the open-loop plant is unstable and that
the feedback controller designed in this exercise successfully stabilizes the plant.

0

0.5

1

024681012
−1

−0.5

0

0.5

1

x
t

0

0.5

1

024681012
−1

−0.5

0

0.5

1

xt

Open-loop (top) and closed-loop (bottom) response of the unstable wave equation.

224 of 275



Beam Equations

225 of 275



Wave (string):

utt−uxx = 0 (463)
ux(0) = 0 (free end) (464)
u(1) = 0 (pinned end) (465)

Euler-Bernoulli beam:

utt +uxxxx = 0 (466)
uxx(0) = uxxx(0) = 0 (free end) (467)
u(0) = ux(0) = 0 (clamped end) (468)

Because of the number of spatial derivatives, the wave equation requires one boundary
condition per end point, whereas the Euler-Bernoulli beam requires two boundary condi-
tions per end point.

226 of 275



Eigenvalues

Both the beam and the string models have all of their eigenvalues on the imaginary axis.
However, while the string eigenvalues are equidistant (growing linearly in n), the beam
eigenvalues get further apart as they go up the jω axis (they grow quadratically in n).

Is a beam is more difficult to control than a string?

Not necessarily.

Controllability results for beams are valid on arbitrarily short time intervals, whereas for
strings they hold only over time intervals that are lower bounded in proportion to the “wave
propagation speed” of the string (which physically corresponds to ‘string tension’).

227 of 275



Slender-beam models:

(1) Euler-Bernoulli (neither shear deformations nor rotary inertia)

(2) Rayleigh

(3) shear beam

(4) Timoshenko (both shear deformations and rotary inertia)

(All of the models include the effects of lateral displacement and bending moment, the
former contributing the kinetic energy and the latter the strain/potential energy.)

Rayleigh and shear beam models are mathematically identical (include term of the form
uxxtt) although they are different physically (the parameters that appear in the two models
are different).

228 of 275



Passive damper for Euler-Bernoulli beam

Rotary damper (moment vs. angular velocity):

uxx(0) = c0uxt(0) c0 > 0 (469)

This design, while damping the higher modes, is not capable of adding a lot of damping to
the first few modes.

229 of 275



Backstepping Control for Euler-Bernoulli Beam

utt +uxxxx = 0 (470)

with “sliding end” boundary conditions

ux(0) = uxxx(0) = 0 (471)

Control boundary conditions at x= 1:

u(1) =U1, uxx(1) =U2 (472)

Introduce a new complex variable

v= ut− juxx (473)

to convert the EB beam into the Schrödinger equation

vt = − jvxx

Parabolic-like PDE with an imaginary diffusion coefficient.

230 of 275



0

0.5

1 0
2

4
6

8

−0.2

−0.1

0

0.1

0.2

tx

u

Open-loop response of the Euler-Bernoulli beam.

0

0.5

1 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

t
x

u

Closed-loop response with backstepping controller (full-state fbk of u and ut).
231 of 275



Shear Beam
utt− εuxxtt +uxxxx = 0 (474)

ε = small constant inversely proportional to the shear modulus (and unrelated to damping)

Write in the form of the wave equation coupled with a second order ODE in x:

εutt = uxx−αx (475)
0 = εαxx−α+ux (476)

α = deflection angle due to the bending of the beam

Free-end boundary condition:

ux(0) = α(0) (477)
αx(0) = 0 (478)

232 of 275



One can verify that this model is equivalent to the model (474) following these steps:

a) (475)x+ (476)= (")

b) (")x = ("")

c) ("")− 1
ε(475)=(474)

233 of 275



Backstepping Control for Shear Beam

The first step of our design is to solve the ODE (476) for α:

α(x) = cosh(bx)α(0)−b
Z x

0
sinh(b(x− y))uy(y)dy (479)

where

b= 1/
√
ε

This solution is easily obtained via Laplace transform in the spatial variable x.

The constant α(0) in (479) can be expressed in terms of α(1) in the following way:

α(0) =
1

cosh(b)

[

α(1)+b
Z 1

0
sinh(b(1− y))uy(y)dy

]

=
1

cosh(b)

[

α(1)+bsinh(b(1− y))u(y)|10 +b2
Z 1

0
cosh(b(1− y))u(y)dy

]

=
1

cosh(b)

[

α(1)−bsinh(b)u(0)+b2
Z 1

0
cosh(b(1− y))u(y)dy

]

. (480)

234 of 275



The integral term on the right hand side of this equality is not spatially causal, due to the
fourth derivative in the original shear beam model (474). To put the system into a strict-
feedback form, we eliminate this integral by choosing

α(1) = bsinh(b)u(0)−b2
Z 1

0
cosh(b(1− y))u(y)dy (481)

so that α(0) = 0. Then we have

α(x) = bsinh(bx)u(0)−b2
Z x

0
cosh(b(x− y))u(y)dy . (482)

Differentiating α(x) with respect to x and substituting the result into the wave equa-
tion (475) we get the system in the form ready for the control design:

εutt = uxx+b2u−b2 cosh(bx)u(0)+b3
Z x

0
sinh(b(x− y))u(y)dy. (483)

235 of 275



Following our procedure, we use the transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy (484)

to map the system (483) into the following exponentially stable target system

εwtt = wxx (485)
wx(0) = c0w(0) (486)
wx(1) = −c1wt(1) , (487)

where c0 and c1 are design parameters. Perhaps somewhat surprisingly, we use the same
target system here as in the control design for the wave equation.

Substituting the transformation (484) into the target system, one can derive the following
PDE for the kernel k(x,y):

kxx = kyy+b2k−b3 sinh(b(x− y))+b3
Z x

y
k(x,ξ)sinh(b(ξ− y))dξ (488)

k(x,x) = −
b2

2
x− c0 (489)

ky(x,0) = b2
Z x

0
k(x,y)cosh(by)dy−b2 cosh(bx) . (490)

236 of 275



This PDE has to be solved numerically.

The second boundary controller (the first one is given by (481)) is obtained by differentiat-
ing (484) with respect to x and setting x= 1:

ux(1) = k(1,1)u(1)+
Z 1

0
kx(1,y)u(y)dy− c1ut(1)+ c1

Z 1

0
k(1,y)ut(y)dy (491)

In a similar way one can design the observer to avoid the need of position and velocity
measurements along the beam.

237 of 275



Uncontrolled Beam Controlled Beam

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [0, 0.4] t ∈ [0, 0.4]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [0.4, 1.5] t ∈ [0.4, 1.5]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [1.5, 2.1] t ∈ [1.5, 2.1]

Snapshots of the shear beam movements with
increasing darkness denoting increasing time in the sequences.

238 of 275



Uncontrolled Beam Controlled Beam

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [2.1, 2.8] t ∈ [2.1, 2.8]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [2.8, 3.6] t ∈ [2.8, 3.6]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [3.6, 4.2] t ∈ [3.6, 4.2]

239 of 275



Control u(1, t)

0 1 2 3 4
−0.04

−0.02

0

0.02

0.04

time

Control α(1, t)

0 1 2 3 4

−0.02

0

0.02

0.04

time

The controls for the shear beam
240 of 275



Timoshenko Beam
εutt = (1+d∂t)(uxx−θx) (492)
µεθtt = (1+d∂t)(εθxx+a(ux−θ)) (493)

u(x, t) = displacement
θ(x, t) = deflection angle

ε ∝ 1/(shear modulus)
µ∝ moment of inertia
a ∝ cross-sectional area
d = Kelvin-Voigt damping

Free-end boundary condition:

ux(0, t) = θ(0, t) (zero force applied at the tip) (494)
θx(0, t) = 0 (zero moment applied at the tip) (495)

Shear beam is a singular perturbation of the Timoshenko beam as µ→ 0.

Unlike the Euler-Bernoulli, shear, and Rayleigh beam models, which are second order in
t, the Timoshenko beam is fourth order in t.

241 of 275



Motion Planning for PDEs

242 of 275



• Start from an output reference trajectory, for example, ur(0, t), as the desired temporal
waveform of the system output u(0, t) ar x= 0.

• Generate the state trajectory ur(x, t) for all x (including x = 1, which produces the
control reference ur(1, t) in the case of Direchlet actuation).

• Combine this result with a feedback control law for the tracking error system u−ur,

u(1, t) −ur(1, t) =
Z 1

0
k(1,y)(u(y, t)−ur(y, t))dy

to stabilize the trajectory ur(x, t), and to force the output u(0, t) to track the output
trajectory ur(0, t).

243 of 275



We forego generality and focus on examples with reference outputs common in practice—
exponential, polynomial, and sinusoidal signals.

“Dirichlet” outputs u(0, t) and the “Neumann” outputs ux(0, t).

Examples for heat equation, reaction-diffusion equation, wave equation, Euler-Bernoulli
beam, and a first order hyperbolic PDE.

Backstepping allows us to solve the tracking problem for the original plant by using the
motion planning solution for the simpler, target system:

u(1, t) = ur(1, t)
︸ ︷︷ ︸

+
Z 1

0
k(1,y)(u(y, t)−ur(y, t)

︸ ︷︷ ︸
)dy

= ur(1, t)−
Z 1

0
k(1,y)ur(y, t)dy

︸ ︷︷ ︸

+
Z 1

0
k(1,y)u(y, t)dy

= wr(1, t)+
Z 1

0
k(1,y)u(y, t)dy

244 of 275



Trajectory Generation

Example 7 (Heat eqn and Dirichlet output, anti-collocated w/ input)

ut = uxx (496)
ux(0) = 0 (497)

Reference output

ur(0, t) = 1+2t− t2 . (498)

Find the reference input ur(1, t). As an intermediate step, construct the full state trajectory
ur(x, t) which simultaneously satisfies (496), (497), and (498).

Search for the state trajectory in the following form:

ur(x, t) =
∞

∑
k=0

ak(t)
xk

k!
(499)

Taylor series in x with time varying coefficients ak(t) that need to be determined from
(496)–(498).

245 of 275



From (498)–(499) we see that

a0(t) = ur(0, t) = 1+2t− t2. (500)

The boundary condition (497) gives

a1(t) = urx(0, t) = 0 . (501)

The next step is to substitute (499) into (496):
∞

∑
k=0

ȧk(t)
xk

k!
=

∂2

∂x2

∞

∑
k=0

ak(t)
xk

k!

=
∞

∑
k=2

ak(t)
k(k−1)xk−2

k!

=
∞

∑
k=2

ak(t)
xk−2

(k−2)!

=
∞

∑
k=0

ak+2(t)
xk

k!
. (502)

246 of 275



We get the recursive relationship

ak+2(t) = ȧk(t) (503)

Using (501) and (500) with (503) results in

a0 = 1+2t− t2, a1 = 0
a2 = 2−2t, a3 = 0
a4 = −2, a5 = 0
a6 = 0, ai = 0 for i> 6.

This gives the reference state trajectory

ur(x, t) = 1+2t+ t2 +(1− t)x2−
1
12
x4,

and the input signal

ur(1, t) =
23
12

+ t− t2.

247 of 275



Note that the output matches reference output trajectory only in the extremely unlikely case
that the initial condition of the plant is satisfied by the state trajectory, that is, if

u(x,0) = 1+ x2−
1
12
x4

To asymptotically track the reference signal as t → ∞ for an arbitrary initial condition we
need to apply feedback.

248 of 275



In the subsequent examples the output reference will not be polynomial and the series will
be infinite and has to be summed.

Example 8 (Reaction-diffusion eqn and Dirichlet output, anti-collocated w/ input)

ut = uxx+λu (504)
ux(0) = 0 (505)

Reference output

ur(0, t) = eαt (506)

α may be real, imaginary, or complex.

Again postulate the full state reference trajectory in the form

ur(x, t) =
∞

∑
k=0

ak(t)
xk

k!
(507)

249 of 275



From (506) and the boundary condition (505) we have

a0(t) = eαt, a1(t) = 0

From the PDE (504) we get

ak+2(t) = ȧk(t)−λak(t)

These conditions give

a2k+1 = 0
a2k+2 = ȧ2k−λa2k

a2 = (α−λ)eαt

a4 = (α−λ)2eαt

a2k = (α−λ)keαt

for k = 0,1,2, . . .

250 of 275



The state trajectory is

ur(x, t) =
∞

∑
k=0

(α−λ)keαt
x2k

(2k)!

=
∞

∑
k=0

eαt
(
√
α−λx)2k

(2k)!

= eαt
{

cosh(
√
α−λx) α≥ λ

cos(
√
λ−αx) α< λ

(508)

The reference input is

ur(1, t) = eαt
{

cosh(
√
α−λ) α≥ λ

cos(
√
λ−α) α< λ

251 of 275



The following formulae are useful when calculating the trajectories for sinusoidal reference
outputs in upcoming examples:

cosh(a) =
∞

∑
k=0

a2k

(2k)!
sinh(a) =

∞

∑
k=0

a2k+1

(2k+1)!

cosh( ja) = cos(a) sinh( ja) = j sin(a)

cos( ja) = cosh(a) sin( ja) = j sinh(a)

252 of 275



Example 9 (Heat eqn and sinusoidal Dirichlet output, anti-collocated w/ input)

ut = uxx (509)
ux(0) = 0 (510)

Reference output

ur(0, t) = sin(ωt) (511)

Since

sin(ωt) = Im{e jωt}

we can get the reference trajectory by setting λ= 0 and α= jω in the previous example:

ur(x, t) = Im
{

cosh(
√

jωx)e jωt
}

(512)

Use the identity
√

j =
1+ j

2

253 of 275



Using the trig/hyperbolic identities, we get

ur(x, t) = Im
{

cosh
(

(1+ j)
√

ω
2
x
)

e jωt
}

= Im







e
√

ω
2 x+ j(ωt+

√
ω
2 x) + e−

√
ω
2 x+ j(ωt−

√
ω
2 x)

2







=
1
2
e
√

ω
2 x sin

(

ωt+
√

ω
2
x
)

+
1
2
e−
√

ω
2 x sin

(

ωt−
√

ω
2
x
)

(513)

Finally, the reference input is

ur(1, t) =
1
2
e
√

ω
2 sin

(

ωt+
√

ω
2

)

+
1
2
e−
√

ω
2 sin

(

ωt−
√

ω
2

)

254 of 275



This signal can rewritten as

ur(1, t) =
1
2
e
√

ω
2 sin

(

ωt+
√

ω
2

)

+
1
2
e−
√

ω
2 sin

(

ωt−
√

ω
2

)

=
1
2
e
√

ω
2
[

sin(ωt)cos
(√

ω
2

)

+ cos(ωt)sin
(√

ω
2

)]

+
1
2
e−
√

ω
2
[

sin (ωt)cos
(√

ω
2

)

− cos(ωt)sin
(√

ω
2

)]

= sin(ωt)cos
(√

ω
2

)

cosh
(√

ω
2

)

+ cos(ωt)sin
(√

ω
2

)

sinh
(√

ω
2

)

The final sinusoidal reference input is

ur(1, t) = sinh
(√

ω
2

)
√

1+ cos2
(√

ω
2

)

︸ ︷︷ ︸

amplitude(ω)

sin







ωt+ arctan

(

tan
(√

ω
2

)

tanh
(√

ω
2

))

︸ ︷︷ ︸

phase(ω)








255 of 275



The examples so far have all dealt with Dirichlet type outputs u(0, t).

The next example deals with the output, ux(1, t), which is Neumann type and collocated
with input!

Example 10 (Heat eqn and Neumann output, collocated w/ input)

ut = uxx (514)
u(0) = 0 (515)

Reference output

urx(1) = sin(ωt) (516)

Postulating ur(x, t) in the form (507), we get ai+2 = ȧi and the boundary condition gives

a2k = 0 (517)

a2k+1 = a(k)
1 (518)

The state trajectory becomes

ur(x, t) =
∞

∑
k=0

a(k)
1 (t)

x2k+1

(2k+1)!
(519)

256 of 275



The output reference is

urx(1, t) =
∞

∑
k=0

a(k)
1 (t)
(2k)!

= sin(ωt) = Im{e jωt} . (520)

Suppose that

a1(t) = Im{Ae jωt},

where A is a constant to be determined. Then

a(k)
1 (t) = Im{A( jω)ke jωt}.

From (520) we get

Im

{

Ae jωt
∞

∑
k=0

(
√
jω)2k

(2k)!

}

= Im{e jωt} (521)

Ae jωt cosh(
√

jω) = e jωt , (522)

so that

A=
1

cosh(
√
jω)

257 of 275



The state trajectory is now

ur(x, t) =
∞

∑
k=0

a(k)
1 (t)

x2k+1

(2k+1)!
(523)

= Im

{

A
∞

∑
k=0

( jω)k
x2k+1

(2k+1)!
e jωt

}

(524)

= Im

{

A√
jω

∞

∑
k=0

(
√
jωx)2k+1

(2k+1)!
e jωt

}

(525)

= Im
{

sinh(
√
jωx)√

jωcosh(
√
jω)

e jωt
}

, (526)

which gives the reference input

ur(1, t) = Im
{

tanh(
√
jω)√

jω
e jωt

}

(527)

258 of 275



All of the examples so far were for parabolic PDEs. The remaining examples are for hy-
perbolic PDEs.

Example 11 (Wave eqn and Dirichlet output, anti-collocated w/ input)

utt = uxx (528)
u(0) = 0 (529)

Reference output

urx(0, t) = sin(ωt) (530)

Searching for ur(x, t) in the form (507), we get

a0 = 0, a1(t) = sin(ωt) = Im{e jωt}
ai+2 = äi(t) ,

which gives

a2k = 0
a2k+1(t) = ( jω)2kIm{e jωt} .

259 of 275



The state reference becomes

ur(x, t) = Im

{

e jωt

jω

∞

∑
k=0

( jωx)2k+1

(2k+1)!

}

= Im

{

e jωt

jω
sinh( jωx)

}

= Im

{

e jωt

ω
sin(ωx)

}

=
1
ω

sin(ωx)sin(ωt),

and the reference input is

ur(1, t) =
sin(ω)

ω
sin(ωt) (531)

Note that for the same desired reference output trajectory, the reference input for the heat
equation (Example 9) has a much more complicated form.

260 of 275



Example 12 (Wave equation with Kelvin-Voigt damping)

εutt = (1+d∂t)uxx (532)
ux(0) = 0 (533)

Reference output

ur(0, t) = sin(ωt) (534)

Reference state trajectory:

ur(x, t) =
1
2







e
√
εω
√√

1+ω2d2−1
√

2
√

1+ω2d2
x

sin




ω




t+

√
ε
ω
√
√

1+ω2d2 +1
√

2
√

1+ω2d2
x











+ e
−
√
εω
√√

1+ω2d2−1
√

2
√

1+ω2d2
x

sin




ω




t−

√
ε
ω
√
√

1+ω2d2 +1
√

2
√

1+ω2d2
x

















. (535)

261 of 275



Example 13 (Euler-Bernoulli beam w/ two outputs and two anti-collocated inputs)

utt +uxxxx = 0 (536)
uxx(0) = uxxx(0) = 0 (537)

Reference outputs

ur(0, t) = sin(ωt) (538)
urx(0, t) = 0 (539)

Note that, because the beam equation is fourth order in x, we are free to assign two
independent reference outputs, and free to choose two reference inputs.

Searching for ur(x, t) in the form (507), we get

a0 = sin(ωt) = Im
{

e jωt
}

, (540)
a1 = a2 = a3 = 0 , (541)

ai+4 = −äi . (542)

Therefore,

a4k = (−1)ka(2k)
0 = Im

{

(−1)k( jω)2ke jωt
}

= ω2k sin(ωt) (543)
a4k+1 = a4k+2 = a4k+3 = 0 . (544)

262 of 275



The reference trajectory becomes

ur(x, t) =
∞

∑
k=0

ω2k x4k

(4k)!
sin(ωt)

=
∞

∑
k=0

(
√
ωx)4k

(4k)!
sin(ωt)

=
1
2
[cosh(

√
ωx)+ cos(

√
ωx)]sin(ωt) ,

and reference inputs are

ur(1, t) =
1
2
[cosh(

√
ω)+ cos(

√
ω)]sin(ωt) ,

urx(1, t) =

√
ω

2
[sinh(

√
ωx)− sin(

√
ωx)]sin(ωt) .

263 of 275



Example 14 (First order hyperbolic PDE)

ut = ux+gu(0) (545)

Reference output

ur(0, t) = sin(ωt) (546)

Searching for the reference trajectory in the form (507), we get

a0 = sin(ωt) = Im
{

e jωt
}

,

a1 = ȧ0−gu(0) = Im
{

( jω−g)e jωt
}

,

ak+1 = ȧk = Im
{

( jω−g)( jω)ke jωt
}

= Im
{(

1−
g
jω

)

( jω)k+1e jωt
}

.

264 of 275



The reference trajectory becomes

ur(x, t) = Im

{

e jωt +
(

1−
g
jω

) ∞

∑
k=1

( jωx)k

k!
e jωt

}

= Im
{[

g
jω

+

(

1−
g
jω

)

e jωx
]

e jωt
}

= −
g
ω

[cos(ωt)− cos(ω(t+ x))]+ sin(ω(t+ x)) .

which gives the reference input

ur(1, t) =
g
ω

[cos(ω(t+1))− cos(ωt)]+ sin(ω(t+1)) (547)

265 of 275



Trajectory Tracking

ut = ux+gu(0)

Recall that we established for any plant that the control law for tracking is

u(1, t) = wr(1, t)+
Z 1

0
k(1,y)u(y, t)dy

For (548) the target system is

wt = wx (548)
Since w(0, t) = u(0, t) and ur(0, t) = sin(ωt), we have that

wr(1, t) = sin(ω(t+1))

Hence, we obtain the complete control law (feedforward plus feedback) as

u(1, t) = sin(ω(t+1))−
Z 1

0
geg(1−y)
︸ ︷︷ ︸

−k(1,y)

u(y, t)dy (549)

266 of 275



0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

Time, t (s)

D
is

pl
ac

em
en

t

reference: (1/2)*(sin(πt/2)+sin(sqrt(2)πt/2))
tip displacement: u(0,t)

Asymptotic tracking for the wave equation with Kelvin-Voigt damping in Example 12, for
the almost periodic trajectory given by

ur(0, t) =
1
2

[

sin
(π

2
t
)

+ sin

(√
2π
2

t

)]

. (550)

267 of 275



Notes and References

The foundations for motion planning for several classes of PDEs were laid in the late 1990’s
in a series of papers by Rouchon, Martin, Fliess, Petit, and coworkers. These results ex-
tended the concept of “flatness” from the finite-dimensional to the infinite-dimensional sys-
tems through the parametrizations of trajectories via Gevrey functions and advance/delay
operations on the reference trajectory.

268 of 275



Homework

1. For the heat equation

ut = uxx
ux(0) = 0 ,

find the input reference signal ur(1, t) so that the output u(0, t) obeys the reference
signal

ur(0, t) = t3 .

2. For the heat equation

ut = uxx
u(0) = 0 ,

find the input reference signal ur(1, t) so that the output ux(0, t) obeys the reference
signal

urx(0, t) = sinωt .
269 of 275



3. For the Euler-Bernoulli beam

utt +uxxxx = 0
uxx(0) = 0
uxxx(0) = 0 ,

show that

ur(x, t) =
sinh

(√
ωx
)

+ sin
(√

ωx
)

2
√
ω

sin(ωt)

is a solution to the system. This result shows that you can produce the output trajec-
tory

ur(0, t) = 0
urx(0, t) = sin(ωt)

with the controls

ur(1, t) =
sinh

√
ω+ sin

√
ω

2
√
ω

sin(ωt)

urx(1, t) =
cosh

√
ω+ cos

√
ω

2
sin(ωt) .

270 of 275



4. Consider the undamped wave equation

utt = uxx
ux(0) = 0 .

Find the state reference trajectory ur(x, t) that corresponds to the output reference

ur(0, t) = sinωt .

Then, recalling that

ux(1, t) = −c0u(1, t)− c1

(

ut(1, t)+ c0

Z 1

0
ut(y, t)dy

)

, c0,c1 > 0

is a stabilizing controller, find the functions M(ω,c0,c1) and φ(ω,c0,c1) to ensure
that the controller

ux(1, t) = M(ω,c0,c1)sin (ωt+φ(ω,c0,c1))

−c0u(1, t)− c1

(

ut(1, t)+ c0

Z 1

0
ut(y, t)dy

)

guarantees that the output u(0, t) achieves asymptotic tracking of the output reference
ur(0, t) = sinωt.

271 of 275



Hint: First show that

M(ω,c0,c1)sin(ωt+φ(ω,c0,c1)) = urx(1, t)+ c0ur(1, t)

+c1

(

urt (1, t)+ c0

Z 1

0
urt (y, t)dy

)

.

Note that the left side of this expression is much more suitable for online implementa-
tion becauseM and φ can be precomputed, whereas the implementation on the right
requires the integration of the reference signal to be done online.

5. This exercise presents an alternative approach to doing trajectory tracking, when com-
pared to the approach in Example 8. Consider the reaction-diffusion equation

ut = uxx+λ(x)u
ux(0) = 0 .

When λ(x) is spatially varying, the motion planning procedure cannot produce
a closed-form solution, even for basic output trajectories like ur(0, t) = sinωt or
ur(0, t) = eαt . (In fact, even for the case λ = const .= 0, the reference trajectory be-
comes considerably more complicated than the trajectory for λ= 0.) However, if our

272 of 275



objective is just tracking, namely not trajectory generation per se but finding a feed-
back law that stabilizes a trajectory that corresponds to a certain output reference,
then it turns out that the feedback law

u(1, t) =
1
2

[

e
√

ω
2 sin

(

ωt+
√

ω
2

)

+ e−
√

ω
2 sin

(

ωt−
√

ω
2

)
]

+
Z 1

0
k(1,y)u(y, t)dy ,

where k(x,y) is the solution of the kernel PDE

kxx(x,y)− kyy(x,y) = λ(y)k(x,y)
ky(x,0) = 0

k(x,x) = −
1
2

Z x

0
λ(y)dy ,

guarantees that

u(x, t) −
Z x

0
k(x,y)u(y, t)dy

−
1
2

[

e
√

ω
2 x sin

(

ωt+
√

ω
2
x
)

+ e−
√

ω
2 x sin

(

ωt−
√

ω
2
x
)
]

→ 0

273 of 275



as t → ∞ for all x ∈ [0,1], which means, in particular, that asymptotic tracking of the
reference output ur(0, t) = sinωt is achieved, namely,

u(0, t)− sinωt → 0 , as t → ∞ .

Explain (prove) this result. It is helpful to use the following notation:

w(x, t) = u(x, t)−
Z x

0
k(x,y)u(y, t)dy

wr(x, t) = ur(x, t)−
Z x

0
k(x,y)ur(y, t)dy

w̃(x, t) = w(x, t)−wr(x, t)

and note that all the three w-variables, w, wr, and w̃, satisfy a heat equation with a
Neumann boundary condition at x= 0 and with a boundary condition given by

w̃(1, t) = w(1, t)−wr(1, t) = 0 , (551)

which determines the control law.

The point of this exercise is that trajectory tracking can be pursued for complicated,
spatially-varying, parabolic and hyperbolic PDEs if one uses backstepping for trajec-
tory stabilization. It is sufficient to develop trajectory generation for the heat or wave

274 of 275



equation and add the input (labeled in this exercise as wr(1, t)) to the usual stabilizing
backstepping feedback law.

275 of 275




